Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,952 Bytes
b55d767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import librosa
import numpy as np
import pandas as pd
from tqdm import tqdm
def _clip_audio(cfg, data: pd.DataFrame, data_name: str = "bvcc"):
(cfg.preprocess.save_path / data_name).mkdir(parents=True, exist_ok=True)
for file in tqdm(data["file_path"].values, desc="Clipping audio files"):
y, _ = librosa.load(file, sr=None)
y, _ = librosa.effects.trim(y, top_db=cfg.preprocess.top_db)
np.save(
cfg.preprocess.save_path
/ data_name
/ file.split("/")[-1].replace(".wav", ".npy"),
y,
)
def _select_audio(cfg, data: pd.DataFrame, data_name: str = "bvcc"):
if cfg.preprocess.min_seconds is None:
return data
select_file_name = f"min_seconds={cfg.preprocess.min_seconds}.txt"
if select_file_name in os.listdir(cfg.preprocess.save_path / data_name):
with open(
cfg.preprocess.save_path / data_name / select_file_name,
"r",
) as f:
select = f.read().split("\n")
else:
select = []
for file in tqdm(data["file_path"].values, desc="Selecting audio files"):
y = np.load(file)
if y.shape[0] >= cfg.preprocess.min_seconds * cfg.sr:
select.append(file)
with open(
cfg.preprocess.save_path / data_name / select_file_name,
"w",
) as f:
f.write("\n".join(select))
_change_file_path(cfg, data)
data = data[data["file_path"].isin(set(select))]
return data
def _clip_and_select_audio(
cfg, data: pd.DataFrame, data_name: str = "bvcc"
) -> pd.DataFrame:
if not (cfg.preprocess.save_path / data_name).exists():
_clip_audio(cfg, data)
print(
f"Clipped audio files are saved to `{cfg.preprocess.save_path / data_name}`."
)
else:
print(
f"Clipped audio files already exist in `{cfg.preprocess.save_path / data_name}`."
)
_change_file_path(cfg, data)
data = _select_audio(cfg, data)
print(f"{len(data)} files are selected.")
return data
def _change_file_path(cfg, data: pd.DataFrame, data_name: str = "bvcc"):
data.loc[:, "file_path"] = data.loc[:, "file_path"].apply(
lambda x: cfg.preprocess.save_path
/ data_name
/ x.split("/")[-1].replace(".wav", ".npy")
)
def _add_metadata(cfg, data: pd.DataFrame):
metadata = []
for t in ["TRAINSET", "DEVSET", "TESTSET"]:
meta = pd.read_csv(cfg.input_dir / f"sets/{t}")
meta.columns = ["sys_id", "utt_id", "rating", "ignore", "listener_info"]
meta = meta.groupby("utt_id", as_index=False).first()[["utt_id", "sys_id"]]
metadata.append(meta)
metadata = pd.concat(metadata, axis=0)
dt = pd.merge(data, metadata, on="utt_id", how="left")
data["sys_id"] = dt["sys_id"]
def add_sys_mean(data: pd.DataFrame):
sys_mean = (
data.groupby("sys_id", as_index=False)["mos"].mean().reset_index(drop=True)
)
sys_mean.columns = ["sys_id", "sys_mos"]
dt = pd.merge(data, sys_mean, on="sys_id", how="left")
data["sys_mos"] = dt["sys_mos"]
def preprocess(cfg, data: pd.DataFrame) -> pd.DataFrame:
data = _clip_and_select_audio(cfg, data)
_add_metadata(cfg, data)
add_sys_mean(data)
data["dataset"] = "bvcc"
if cfg.external_data:
exdata = _get_external_data(cfg, data)
add_sys_mean(exdata)
for col in data.columns:
if col not in exdata.columns:
exdata[col] = None
data = pd.concat([data, exdata], axis=0)
print("Using dataset:", data["dataset"].unique())
if not cfg.use_bvcc:
data = data[data["dataset"] != "bvcc"]
return data
def preprocess_test(cfg, data: pd.DataFrame) -> pd.DataFrame:
_change_file_path(cfg, data)
_add_metadata(cfg, data)
add_sys_mean(data)
data["dataset"] = cfg.predict_dataset
return data
def _get_external_data(cfg, data: pd.DataFrame) -> pd.DataFrame:
exdata = []
if cfg.external_data == "all" or "sarulab" in cfg.external_data:
ysdata = pd.read_csv(
"data2/sarulab/VMC2024_MOS.csv", header=None, names=["utt_id", "mos"]
)
ysdata["mos"] = ysdata["mos"].astype(float)
ysdata["sys_id"] = ysdata["utt_id"].apply(
lambda x: "sarulab-" + x.split("-")[0]
)
ysdata["file_path"] = ysdata["utt_id"].apply(
lambda x: cfg.preprocess.save_path / "bvcc" / x.replace(".wav", ".npy")
)
ysdata["dataset"] = "sarulab"
exdata.append(ysdata)
for name in ["blizzard2008", "blizzard2009", "blizzard2011"]:
if cfg.external_data != "all" and name not in cfg.external_data:
continue
bzdata = pd.read_csv(
f"data2/{name}/{name}_mos.csv",
header=None,
names=["utt_id", "mos"],
)
bzdata["mos"] = bzdata["mos"].astype(float)
bzdata["sys_id"] = bzdata["utt_id"].apply(
lambda x: f"{name}-" + x.split("_")[0]
)
bzdata["file_path"] = bzdata["utt_id"].apply(
lambda x: os.path.join(f"data2/{name}/{name}_wavs", x)
)
bzdata["dataset"] = name
exdata.append(bzdata)
for a in ["EH1", "EH2", "ES1", "ES3"]:
if cfg.external_data != "all" and f"blizzard2010-{a}" not in cfg.external_data:
continue
d = pd.read_csv(
f"data2/blizzard2010/blizzard2010_mos_{a}.csv",
header=None,
names=["utt_id", "mos"],
)
d["mos"] = d["mos"].astype(float)
d["sys_id"] = d["utt_id"].apply(
lambda x: f"blizzard2010-{a}-" + x.split("_")[0]
)
d["file_path"] = d["utt_id"].apply(
lambda x: os.path.join(f"data2/blizzard2010/blizzard2010_wavs_{a}", x)
)
d["dataset"] = f"blizzard2010-{a}"
exdata.append(d)
if cfg.external_data == "all" or "somos" in cfg.external_data:
train_mos_list = pd.read_csv(
"data2/somos/training_files/split1/clean/train_mos_list.txt",
)
val_mos_list = pd.read_csv(
"data2/somos/training_files/split1/clean/valid_mos_list.txt",
)
test_mos_list = pd.read_csv(
"data2/somos/training_files/split1/clean/test_mos_list.txt",
)
somosdata = pd.concat([train_mos_list, val_mos_list, test_mos_list], axis=0)
somosdata.columns = ["utt_id", "mos"]
somosdata["mos"] = somosdata["mos"].astype(float)
somosdata["sys_id"] = somosdata["utt_id"].apply(
lambda x: "somos-" + x.replace(".wav", "").split("_")[-1]
)
somosdata["file_path"] = somosdata["utt_id"].apply(
lambda x: os.path.join("data2/somos/audios", x)
)
somosdata["dataset"] = "somos"
exdata.append(somosdata)
exdata = pd.concat(exdata, axis=0)
return exdata
|