File size: 6,952 Bytes
b55d767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os

import librosa
import numpy as np
import pandas as pd
from tqdm import tqdm


def _clip_audio(cfg, data: pd.DataFrame, data_name: str = "bvcc"):
    (cfg.preprocess.save_path / data_name).mkdir(parents=True, exist_ok=True)
    for file in tqdm(data["file_path"].values, desc="Clipping audio files"):
        y, _ = librosa.load(file, sr=None)
        y, _ = librosa.effects.trim(y, top_db=cfg.preprocess.top_db)
        np.save(
            cfg.preprocess.save_path
            / data_name
            / file.split("/")[-1].replace(".wav", ".npy"),
            y,
        )


def _select_audio(cfg, data: pd.DataFrame, data_name: str = "bvcc"):
    if cfg.preprocess.min_seconds is None:
        return data
    select_file_name = f"min_seconds={cfg.preprocess.min_seconds}.txt"
    if select_file_name in os.listdir(cfg.preprocess.save_path / data_name):
        with open(
            cfg.preprocess.save_path / data_name / select_file_name,
            "r",
        ) as f:
            select = f.read().split("\n")
    else:
        select = []
        for file in tqdm(data["file_path"].values, desc="Selecting audio files"):
            y = np.load(file)
            if y.shape[0] >= cfg.preprocess.min_seconds * cfg.sr:
                select.append(file)
        with open(
            cfg.preprocess.save_path / data_name / select_file_name,
            "w",
        ) as f:
            f.write("\n".join(select))
    _change_file_path(cfg, data)
    data = data[data["file_path"].isin(set(select))]
    return data


def _clip_and_select_audio(
    cfg, data: pd.DataFrame, data_name: str = "bvcc"
) -> pd.DataFrame:
    if not (cfg.preprocess.save_path / data_name).exists():
        _clip_audio(cfg, data)
        print(
            f"Clipped audio files are saved to `{cfg.preprocess.save_path / data_name}`."
        )
    else:
        print(
            f"Clipped audio files already exist in `{cfg.preprocess.save_path / data_name}`."
        )
    _change_file_path(cfg, data)
    data = _select_audio(cfg, data)
    print(f"{len(data)} files are selected.")
    return data


def _change_file_path(cfg, data: pd.DataFrame, data_name: str = "bvcc"):
    data.loc[:, "file_path"] = data.loc[:, "file_path"].apply(
        lambda x: cfg.preprocess.save_path
        / data_name
        / x.split("/")[-1].replace(".wav", ".npy")
    )


def _add_metadata(cfg, data: pd.DataFrame):
    metadata = []
    for t in ["TRAINSET", "DEVSET", "TESTSET"]:
        meta = pd.read_csv(cfg.input_dir / f"sets/{t}")
        meta.columns = ["sys_id", "utt_id", "rating", "ignore", "listener_info"]
        meta = meta.groupby("utt_id", as_index=False).first()[["utt_id", "sys_id"]]
        metadata.append(meta)
    metadata = pd.concat(metadata, axis=0)
    dt = pd.merge(data, metadata, on="utt_id", how="left")
    data["sys_id"] = dt["sys_id"]


def add_sys_mean(data: pd.DataFrame):
    sys_mean = (
        data.groupby("sys_id", as_index=False)["mos"].mean().reset_index(drop=True)
    )
    sys_mean.columns = ["sys_id", "sys_mos"]
    dt = pd.merge(data, sys_mean, on="sys_id", how="left")
    data["sys_mos"] = dt["sys_mos"]


def preprocess(cfg, data: pd.DataFrame) -> pd.DataFrame:
    data = _clip_and_select_audio(cfg, data)
    _add_metadata(cfg, data)
    add_sys_mean(data)
    data["dataset"] = "bvcc"
    if cfg.external_data:
        exdata = _get_external_data(cfg, data)
        add_sys_mean(exdata)
        for col in data.columns:
            if col not in exdata.columns:
                exdata[col] = None
        data = pd.concat([data, exdata], axis=0)
        print("Using dataset:", data["dataset"].unique())
    if not cfg.use_bvcc:
        data = data[data["dataset"] != "bvcc"]
    return data


def preprocess_test(cfg, data: pd.DataFrame) -> pd.DataFrame:
    _change_file_path(cfg, data)
    _add_metadata(cfg, data)
    add_sys_mean(data)
    data["dataset"] = cfg.predict_dataset
    return data


def _get_external_data(cfg, data: pd.DataFrame) -> pd.DataFrame:
    exdata = []
    if cfg.external_data == "all" or "sarulab" in cfg.external_data:
        ysdata = pd.read_csv(
            "data2/sarulab/VMC2024_MOS.csv", header=None, names=["utt_id", "mos"]
        )
        ysdata["mos"] = ysdata["mos"].astype(float)
        ysdata["sys_id"] = ysdata["utt_id"].apply(
            lambda x: "sarulab-" + x.split("-")[0]
        )
        ysdata["file_path"] = ysdata["utt_id"].apply(
            lambda x: cfg.preprocess.save_path / "bvcc" / x.replace(".wav", ".npy")
        )
        ysdata["dataset"] = "sarulab"
        exdata.append(ysdata)

    for name in ["blizzard2008", "blizzard2009", "blizzard2011"]:
        if cfg.external_data != "all" and name not in cfg.external_data:
            continue
        bzdata = pd.read_csv(
            f"data2/{name}/{name}_mos.csv",
            header=None,
            names=["utt_id", "mos"],
        )
        bzdata["mos"] = bzdata["mos"].astype(float)
        bzdata["sys_id"] = bzdata["utt_id"].apply(
            lambda x: f"{name}-" + x.split("_")[0]
        )
        bzdata["file_path"] = bzdata["utt_id"].apply(
            lambda x: os.path.join(f"data2/{name}/{name}_wavs", x)
        )
        bzdata["dataset"] = name
        exdata.append(bzdata)

    for a in ["EH1", "EH2", "ES1", "ES3"]:
        if cfg.external_data != "all" and f"blizzard2010-{a}" not in cfg.external_data:
            continue
        d = pd.read_csv(
            f"data2/blizzard2010/blizzard2010_mos_{a}.csv",
            header=None,
            names=["utt_id", "mos"],
        )
        d["mos"] = d["mos"].astype(float)
        d["sys_id"] = d["utt_id"].apply(
            lambda x: f"blizzard2010-{a}-" + x.split("_")[0]
        )
        d["file_path"] = d["utt_id"].apply(
            lambda x: os.path.join(f"data2/blizzard2010/blizzard2010_wavs_{a}", x)
        )
        d["dataset"] = f"blizzard2010-{a}"
        exdata.append(d)

    if cfg.external_data == "all" or "somos" in cfg.external_data:
        train_mos_list = pd.read_csv(
            "data2/somos/training_files/split1/clean/train_mos_list.txt",
        )
        val_mos_list = pd.read_csv(
            "data2/somos/training_files/split1/clean/valid_mos_list.txt",
        )
        test_mos_list = pd.read_csv(
            "data2/somos/training_files/split1/clean/test_mos_list.txt",
        )
        somosdata = pd.concat([train_mos_list, val_mos_list, test_mos_list], axis=0)
        somosdata.columns = ["utt_id", "mos"]
        somosdata["mos"] = somosdata["mos"].astype(float)
        somosdata["sys_id"] = somosdata["utt_id"].apply(
            lambda x: "somos-" + x.replace(".wav", "").split("_")[-1]
        )
        somosdata["file_path"] = somosdata["utt_id"].apply(
            lambda x: os.path.join("data2/somos/audios", x)
        )
        somosdata["dataset"] = "somos"
        exdata.append(somosdata)

    exdata = pd.concat(exdata, axis=0)

    return exdata