Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,10 @@ import pandas as pd
|
|
3 |
import io
|
4 |
import re
|
5 |
|
|
|
6 |
# Constants
|
7 |
GITHUB_URL = "https://github.com/Sartify/STEL"
|
8 |
-
POSSIBLE_NON_BENCHMARK_COLS = ["
|
9 |
|
10 |
def extract_table_from_markdown(markdown_text, table_start):
|
11 |
"""Extract table content from markdown text."""
|
@@ -15,7 +16,6 @@ def extract_table_from_markdown(markdown_text, table_start):
|
|
15 |
for line in lines:
|
16 |
if line.startswith(table_start):
|
17 |
capture = True
|
18 |
-
continue
|
19 |
if capture and line.strip() == '':
|
20 |
break
|
21 |
if capture:
|
@@ -24,17 +24,37 @@ def extract_table_from_markdown(markdown_text, table_start):
|
|
24 |
|
25 |
def markdown_table_to_df(table_content):
|
26 |
"""Convert markdown table to pandas DataFrame."""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return df
|
32 |
|
33 |
def setup_page():
|
34 |
"""Set up the Streamlit page."""
|
35 |
st.set_page_config(page_title="Swahili Text Embeddings Leaderboard", page_icon="⚡", layout="wide")
|
36 |
st.title("⚡ Swahili Text Embeddings Leaderboard (STEL)")
|
37 |
-
st.image("https://raw.githubusercontent.com/username/repo/main/
|
38 |
|
39 |
def display_leaderboard(df):
|
40 |
"""Display the leaderboard."""
|
@@ -51,79 +71,13 @@ def display_leaderboard(df):
|
|
51 |
df_display = df[present_non_benchmark_cols + selected_columns]
|
52 |
|
53 |
# Display dataframe
|
54 |
-
st.dataframe(df_display)
|
55 |
|
56 |
# Download buttons
|
57 |
csv = df_display.to_csv(index=False)
|
58 |
st.download_button(label="Download as CSV", data=csv, file_name="leaderboard.csv", mime="text/csv")
|
59 |
|
60 |
-
|
61 |
-
"""Display the evaluation section."""
|
62 |
-
st.header("🧪 Evaluation")
|
63 |
-
st.markdown("""
|
64 |
-
To evaluate a model on the Swahili Embeddings Text Benchmark, you can use the following Python script:
|
65 |
-
```python
|
66 |
-
pip install mteb
|
67 |
-
pip install sentence-transformers
|
68 |
-
import mteb
|
69 |
-
from sentence_transformers import SentenceTransformer
|
70 |
-
|
71 |
-
models = ["sartifyllc/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka"]
|
72 |
-
|
73 |
-
for model_name in models:
|
74 |
-
truncate_dim = 768
|
75 |
-
language = "swa"
|
76 |
-
|
77 |
-
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
78 |
-
model = SentenceTransformer(model_name, device=device, trust_remote_code=True)
|
79 |
-
|
80 |
-
tasks = [
|
81 |
-
mteb.get_task("AfriSentiClassification", languages=["swa"]),
|
82 |
-
mteb.get_task("AfriSentiLangClassification", languages=["swa"]),
|
83 |
-
mteb.get_task("MasakhaNEWSClassification", languages=["swa"]),
|
84 |
-
mteb.get_task("MassiveIntentClassification", languages=["swa"]),
|
85 |
-
mteb.get_task("MassiveScenarioClassification", languages=["swa"]),
|
86 |
-
mteb.get_task("SwahiliNewsClassification", languages=["swa"]),
|
87 |
-
]
|
88 |
-
|
89 |
-
evaluation = mteb.MTEB(tasks=tasks)
|
90 |
-
results = evaluation.run(model, output_folder=f"{model_name}")
|
91 |
-
|
92 |
-
tasks = mteb.get_tasks(task_types=["PairClassification", "Reranking", "BitextMining", "Clustering", "Retrieval"], languages=["swa"])
|
93 |
-
|
94 |
-
evaluation = mteb.MTEB(tasks=tasks)
|
95 |
-
results = evaluation.run(model, output_folder=f"{model_name}")
|
96 |
-
```
|
97 |
-
""")
|
98 |
-
|
99 |
-
def display_contribution():
|
100 |
-
"""Display the contribution section."""
|
101 |
-
st.header("🤝 How to Contribute")
|
102 |
-
st.markdown("""
|
103 |
-
We welcome and appreciate all contributions! You can help by:
|
104 |
-
|
105 |
-
### Table Work
|
106 |
-
|
107 |
-
- Filling in missing entries.
|
108 |
-
- New models are added as new rows to the leaderboard (maintaining descending order).
|
109 |
-
- Add new benchmarks as new columns in the leaderboard and include them in the benchmarks table (maintaining descending order).
|
110 |
-
|
111 |
-
### Code Work
|
112 |
-
|
113 |
-
- Improving the existing code.
|
114 |
-
- Requesting and implementing new features.
|
115 |
-
""")
|
116 |
-
|
117 |
-
def display_sponsorship():
|
118 |
-
"""Display the sponsorship section."""
|
119 |
-
st.header("🤝 Sponsorship")
|
120 |
-
st.markdown("""
|
121 |
-
This benchmark is Swahili-based, and we need support translating and curating more tasks into Swahili.
|
122 |
-
Sponsorships are welcome to help advance this endeavour. Your sponsorship will facilitate essential
|
123 |
-
translation efforts, bridge language barriers, and make the benchmark accessible to a broader audience.
|
124 |
-
We are grateful for the dedication shown by our collaborators and aim to extend this impact further
|
125 |
-
with the support of sponsors committed to advancing language technologies.
|
126 |
-
""")
|
127 |
|
128 |
def main():
|
129 |
setup_page()
|
@@ -145,6 +99,4 @@ def main():
|
|
145 |
st.markdown("Thank you for being part of this effort to advance Swahili language technologies!")
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
-
main()
|
149 |
-
|
150 |
-
|
|
|
3 |
import io
|
4 |
import re
|
5 |
|
6 |
+
|
7 |
# Constants
|
8 |
GITHUB_URL = "https://github.com/Sartify/STEL"
|
9 |
+
POSSIBLE_NON_BENCHMARK_COLS = ["Model Name", "Publisher", "Open?", "Basemodel", "Matryoshka", "Dimension", "Average"]
|
10 |
|
11 |
def extract_table_from_markdown(markdown_text, table_start):
|
12 |
"""Extract table content from markdown text."""
|
|
|
16 |
for line in lines:
|
17 |
if line.startswith(table_start):
|
18 |
capture = True
|
|
|
19 |
if capture and line.strip() == '':
|
20 |
break
|
21 |
if capture:
|
|
|
24 |
|
25 |
def markdown_table_to_df(table_content):
|
26 |
"""Convert markdown table to pandas DataFrame."""
|
27 |
+
# Split the table content into lines
|
28 |
+
lines = table_content.split('\n')
|
29 |
+
|
30 |
+
# Extract headers
|
31 |
+
headers = [h.strip() for h in lines[0].split('|') if h.strip()]
|
32 |
+
|
33 |
+
# Extract data
|
34 |
+
data = []
|
35 |
+
for line in lines[2:]: # Skip the header separator line
|
36 |
+
row = [cell.strip() for cell in line.split('|') if cell.strip()]
|
37 |
+
if row:
|
38 |
+
data.append(row)
|
39 |
+
|
40 |
+
# Create DataFrame
|
41 |
+
df = pd.DataFrame(data, columns=headers)
|
42 |
+
|
43 |
+
# Convert numeric columns to float
|
44 |
+
for col in df.columns:
|
45 |
+
if df[col].dtype == object:
|
46 |
+
try:
|
47 |
+
df[col] = df[col].astype(float)
|
48 |
+
except ValueError:
|
49 |
+
pass # Keep as string if conversion fails
|
50 |
+
|
51 |
return df
|
52 |
|
53 |
def setup_page():
|
54 |
"""Set up the Streamlit page."""
|
55 |
st.set_page_config(page_title="Swahili Text Embeddings Leaderboard", page_icon="⚡", layout="wide")
|
56 |
st.title("⚡ Swahili Text Embeddings Leaderboard (STEL)")
|
57 |
+
st.image("https://raw.githubusercontent.com/username/repo/main/STEL.jpg", width=300)
|
58 |
|
59 |
def display_leaderboard(df):
|
60 |
"""Display the leaderboard."""
|
|
|
71 |
df_display = df[present_non_benchmark_cols + selected_columns]
|
72 |
|
73 |
# Display dataframe
|
74 |
+
st.dataframe(df_display.style.format("{:.4f}", subset=selected_columns))
|
75 |
|
76 |
# Download buttons
|
77 |
csv = df_display.to_csv(index=False)
|
78 |
st.download_button(label="Download as CSV", data=csv, file_name="leaderboard.csv", mime="text/csv")
|
79 |
|
80 |
+
# ... (rest of the code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
def main():
|
83 |
setup_page()
|
|
|
99 |
st.markdown("Thank you for being part of this effort to advance Swahili language technologies!")
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
+
main()
|
|
|
|