Spaces:
Running
Running
File size: 5,933 Bytes
574ab7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
import gradio as gr
import numpy as np
import torch
from pathlib import Path
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.2")
from demo_inference.demo_tts import DemoTTS
from demo_inference.demo_asr import DemoASR
from demo_inference.demo_anonymization import DemoAnonymizer
def pcm2float(sig, dtype='float32'):
"""
https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182
"""
sig = np.asarray(sig)
if sig.dtype.kind not in 'iu':
raise TypeError("'sig' must be an array of integers")
dtype = np.dtype(dtype)
if dtype.kind != 'f':
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(sig.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
return (sig.astype(dtype) - offset) / abs_max
def float2pcm(sig, dtype='int16'):
"""
https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182
"""
sig = np.asarray(sig)
if sig.dtype.kind != 'f':
raise TypeError("'sig' must be a float array")
dtype = np.dtype(dtype)
if dtype.kind not in 'iu':
raise TypeError("'dtype' must be an integer type")
i = np.iinfo(dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype)
class VPInterface:
def __init__(self):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.path_to_tts_models = Path('models', 'tts')
self.path_to_asr_model = Path('models', 'asr')
self.path_to_anon_model = Path('models', 'anonymization')
self.synthesis_model = DemoTTS(model_paths=self.path_to_tts_models, model_tag='Libri100',
device=self.device)
self.asr_model = DemoASR(model_path=self.path_to_asr_model, model_tag='phones', device=self.device)
self.anon_model = DemoAnonymizer(model_path=self.path_to_anon_model, model_tag='pool',
device=self.device)
def read(self, recording, asr_model_tag, anon_model_tag, tts_model_tag):
sr, audio = recording
audio = pcm2float(audio)
self._check_models(asr_model_tag, anon_model_tag, tts_model_tag)
text_is_phonemes = (self.asr_model.model_tag == 'phones')
text = self.asr_model.recognize_speech(audio, sr)
print(text)
speaker_embedding = self.anon_model.anonymize_embedding(audio, sr)
print(speaker_embedding)
syn_audio = self.synthesis_model.read_text(transcription=text, speaker_embedding=speaker_embedding,
text_is_phonemes=text_is_phonemes)
return 48000, float2pcm(syn_audio.cpu().numpy())
def _check_models(self, asr_model_tag, anon_model_tag, tts_model_tag):
if asr_model_tag != self.asr_model.model_tag:
self.asr_model = DemoASR(model_path=self.path_to_asr_model, model_tag=asr_model_tag, device=self.device)
if anon_model_tag != self.anon_model.model_tag:
self.anon_model = DemoAnonymizer(model_path=self.path_to_anon_model, model_tag=anon_model_tag,
device=self.device)
if tts_model_tag != self.synthesis_model.model_tag:
self.synthesis_model = DemoTTS(model_paths=self.path_to_tts_models, model_tag=tts_model_tag,
device=self.device)
model = VPInterface()
article = """
This demo allows you to anonymize your input speech by defining the single models for ASR, anonymization and TTS. If
you want to know more about each model, please read the paper linked above. Every time you click the *submit* button,
you should receive a new voice.
Note that for *pool* anonymization in this demo, we are using a different scaling approach (
sklearn.preprocessing.StandardScaler instead of sklearn.preprocessing.MinMaxScaler) because we are processing only
one sample at a time and would otherwise always end up with the same voice.
This demo is still work in progress, so please be lenient with possible low quality and errors. Also, be aware that
this Huggingface space runs on CPU which makes the demo quite slow.
For more information about this system, visit our Github page: [https://github.com/DigitalPhonetics/speaker-anonymization](https://github.com/DigitalPhonetics/speaker-anonymization)
"""
description = """
## Test demo corresponding to the models in our paper [Speaker Anonymization with Phonetic Intermediate Representations](https://arxiv.org/abs/2207.04834)
"""
css = """
.gr-button-primary {background-color: green !important, border-color: green}
"""
iface = gr.Interface(fn=model.read,
inputs=[gr.inputs.Audio(source='microphone', type='numpy', label='Say a sentence in English.'),
gr.inputs.Dropdown(['phones', 'STT', 'TTS'], type='value', default='phones',
label='ASR model'),
gr.inputs.Dropdown(['pool', 'random', 'pool raw'], type='value', default='pool',
label='Anonymization'),
gr.inputs.Dropdown(['Libri100', 'Libri100 + finetuned', 'Libri600',
'Libri600 + finetuned'], type='value', default='Libri100',
label='TTS model')
],
outputs=gr.outputs.Audio(type='numpy', label=None),
layout='vertical',
title='IMS Speaker Anonymization',
description=description,
theme='default',
allow_flagging='never',
article=article,
allow_screenshot=False)
iface.launch(enable_queue=True)
|