Sarah Flanagan commited on
Commit
082e680
·
1 Parent(s): 800e5de

Add application file

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+
7
+ labels = ['AS-yes', 'AS-no', 'AS-no_information']
8
+
9
+ # Change `transformersbook` to your Hub username
10
+ model_id = "sarahflan/distilbert-base-uncased-finetuned-AS_sentences"
11
+ classifier = pipeline("text-classification", model=model_id)
12
+
13
+ st.title("Aortic Stenosis sentence classifier ")
14
+
15
+ sentence = st.text_input('Echocardiogram demonstrated a heavily calcified aortic valve with limited leaflet mobility. Findings are consistent with severe aortic stenosis.','Patient has AS')
16
+
17
+ preds = classifier(sentence, return_all_scores=True)
18
+
19
+ preds_df = pd.DataFrame(preds[0], columns=['score'])
20
+ preds_df['labels'] = labels
21
+
22
+ sorted_preds_df = preds_df.sort_values(by='score', ascending=False).head(20)
23
+
24
+ fig, ax = plt.subplots()
25
+ ax.bar(sorted_preds_df['labels'], 100 * sorted_preds_df['score'], color='C0')
26
+ ax.set_title(f'"{sentence}"')
27
+ ax.set_ylabel("Class probability (%)")
28
+ ax.tick_params(axis='x', labelrotation=90)
29
+
30
+ st.pyplot(fig)