Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
|
8 |
+
model_name = "oyqiz/uzbek_stt"
|
9 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
10 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
11 |
+
|
12 |
+
|
13 |
+
st.title("Ovozni matnga o'girish")
|
14 |
+
st.write("Audio faylingizni yuklang:")
|
15 |
+
|
16 |
+
# File uploader
|
17 |
+
uploaded_file = st.file_uploader("Audio faylingizni tanlang...", type=["wav", "mp3", "ogg"])
|
18 |
+
|
19 |
+
def transcribe_audio(audio_file):
|
20 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
21 |
+
if sample_rate != 16000:
|
22 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
23 |
+
sample_rate = 16000
|
24 |
+
input_values = processor(waveform, sampling_rate=sample_rate, return_tensors="pt").input_values
|
25 |
+
with torch.no_grad():
|
26 |
+
input_values = input_values.squeeze(1)
|
27 |
+
logits = model(input_values).logits
|
28 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
29 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
30 |
+
return transcription
|
31 |
+
|
32 |
+
if uploaded_file is not None:
|
33 |
+
|
34 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
35 |
+
tmp_file.write(uploaded_file.read())
|
36 |
+
tmp_file_path = tmp_file.name
|
37 |
+
|
38 |
+
|
39 |
+
transcription = transcribe_audio(tmp_file_path)
|
40 |
+
|
41 |
+
st.write("Natija:")
|
42 |
+
st.write(transcription)
|