File size: 10,202 Bytes
8ff0c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse

import gradio as gr
import numpy as np
import torch

from pulid import attention_processor as attention
from pulid.pipeline_v1_1 import PuLIDPipeline
from pulid.utils import resize_numpy_image_long

torch.set_grad_enabled(False)

parser = argparse.ArgumentParser()
parser.add_argument(
    '--base',
    type=str,
    default='RunDiffusion/Juggernaut-XL-v9',
    choices=[
        'Lykon/dreamshaper-xl-lightning',
        # 'SG161222/RealVisXL_V4.0', will add it later
        'RunDiffusion/Juggernaut-XL-v9',
    ],
)
# parser.add_argument('--sampler', type=str, default='dpmpp_2m', choices=['dpmpp_sde', 'dpmpp_2m'])
parser.add_argument('--port', type=int, default=7860)
args = parser.parse_args()

use_lightning_model = 'lightning' in args.base.lower()
# currently we only support two commonly used sampler
args.sampler = 'dpmpp_sde' if use_lightning_model else 'dpmpp_2m'
if use_lightning_model:
    default_cfg = 2.0
    default_steps = 5
else:
    default_cfg = 7.0
    default_steps = 25

pipeline = PuLIDPipeline(sdxl_repo=args.base, sampler=args.sampler)

# other params
DEFAULT_NEGATIVE_PROMPT = (
    'flaws in the eyes, flaws in the face, flaws, lowres, non-HDRi, low quality, worst quality,'
    'artifacts noise, text, watermark, glitch, deformed, mutated, ugly, disfigured, hands, '
    'low resolution, partially rendered objects,  deformed or partially rendered eyes, '
    'deformed, deformed eyeballs, cross-eyed,blurry'
)

dreamshaper_example_inps = [
    ['portrait, blacklight', 'example_inputs/liuyifei.png', 42, 0.8, 10],
    ['pixel art, 1boy', 'example_inputs/lecun.jpg', 42, 0.8, 10],
    [
        'cinematic film still, close up, photo of redheaded girl near grasses, fictional landscapes, (intense sunlight:1.4), realist detail, brooding mood, ue5, detailed character expressions, light amber and red, amazing quality, wallpaper, analog film grain',
        'example_inputs/liuyifei.png',
        42,
        0.8,
        10,
    ],
    [
        'A minimalist line art depiction of an Artificial Intelligence being\'s thought process, lines and nodes forming intricate patterns.',
        'example_inputs/hinton.jpeg',
        42,
        0.8,
        10,
    ],
    [
        'instagram photo, photo of 23 y.o man in black sweater, pale skin, (smile:0.4), hard shadows',
        'example_inputs/pengwei.jpg',
        42,
        0.8,
        10,
    ],
    [
        'by Tsutomu Nihei,(strange but extremely beautiful:1.4),(masterpiece, best quality:1.4),in the style of nicola samori,The Joker,',
        'example_inputs/lecun.jpg',
        1675432759740519133,
        0.8,
        10,
    ],
]

jugger_example_inps = [
    [
        'robot,simple robot,robot with glass face,ellipse head robot,(made partially out of glass),hexagonal shapes,ferns growing inside head,butterflies on head,butterflies flying around',
        'example_inputs/hinton.jpeg',
        15022214902832471291,
        0.8,
        20,
    ],
    ['sticker art, 1girl', 'example_inputs/liuyifei.png', 42, 0.8, 20],
    [
        '1girl, cute model, Long thick Maxi Skirt, Knit sweater, swept back hair, alluring smile, working at a clothing store, perfect eyes, highly detailed beautiful expressive eyes, detailed eyes, 35mm photograph, film, bokeh, professional, 4k, highly detailed dynamic lighting, photorealistic, 8k, raw, rich, intricate details,',
        'example_inputs/liuyifei.png',
        42,
        0.8,
        20,
    ],
    ['Chinese paper-cut, 1girl', 'example_inputs/liuyifei.png', 42, 0.8, 20],
    ['Studio Ghibli, 1boy', 'example_inputs/hinton.jpeg', 42, 0.8, 20],
    ['1man made of ice sculpture', 'example_inputs/lecun.jpg', 42, 0.8, 20],
    ['portrait of green-skinned shrek, wearing lacoste purple sweater', 'example_inputs/lecun.jpg', 42, 0.8, 20],
    ['1990s Japanese anime, 1girl', 'example_inputs/liuyifei.png', 42, 0.8, 20],
    ['made of little stones, portrait', 'example_inputs/hinton.jpeg', 42, 0.8, 20],
]


@torch.inference_mode()
def run(*args):
    id_image = args[0]
    supp_images = args[1:4]
    prompt, neg_prompt, scale, seed, steps, H, W, id_scale, num_zero, ortho = args[4:]
    seed = int(seed)
    if seed == -1:
        seed = torch.Generator(device="cpu").seed()

    pipeline.debug_img_list = []

    attention.NUM_ZERO = num_zero
    if ortho == 'v2':
        attention.ORTHO = False
        attention.ORTHO_v2 = True
    elif ortho == 'v1':
        attention.ORTHO = True
        attention.ORTHO_v2 = False
    else:
        attention.ORTHO = False
        attention.ORTHO_v2 = False

    if id_image is not None:
        id_image = resize_numpy_image_long(id_image, 1024)
        supp_id_image_list = [
            resize_numpy_image_long(supp_id_image, 1024) for supp_id_image in supp_images if supp_id_image is not None
        ]
        id_image_list = [id_image] + supp_id_image_list
        uncond_id_embedding, id_embedding = pipeline.get_id_embedding(id_image_list)
    else:
        uncond_id_embedding = None
        id_embedding = None

    img = pipeline.inference(
        prompt, (1, H, W), neg_prompt, id_embedding, uncond_id_embedding, id_scale, scale, steps, seed
    )[0]

    return np.array(img), str(seed), pipeline.debug_img_list


_HEADER_ = '''
<h2><b>Official Gradio Demo</b></h2><h2><a href='https://github.com/ToTheBeginning/PuLID' target='_blank'><b>PuLID: Pure and Lightning ID Customization via Contrastive Alignment</b></a></h2>

**PuLID** is a tuning-free ID customization approach. PuLID maintains high ID fidelity while effectively reducing interference with the original model’s behavior.

Code: <a href='https://github.com/ToTheBeginning/PuLID' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2404.16022' target='_blank'>ArXiv</a>.

❗️❗️❗️**Tips:**
- we provide some examples in the bottom, you can try these example prompts first
- a single ID image is usually sufficient, you can also supplement with additional auxiliary images
- You can adjust the trade-off between ID fidelity and editability in the advanced options, but generally, the default settings are good enough.

'''  # noqa E501

_CITE_ = r"""
If PuLID is helpful, please help to ⭐ the <a href='https://github.com/ToTheBeginning/PuLID' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/ToTheBeginning/PuLID?style=social)](https://github.com/ToTheBeginning/PuLID)
---
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b> or <b>[email protected]</b>.
"""  # noqa E501


with gr.Blocks(title="PuLID", css=".gr-box {border-color: #8136e2}") as demo:
    gr.Markdown(_HEADER_)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                face_image = gr.Image(label="ID image (main)", height=256)
                supp_image1 = gr.Image(label="Additional ID image (auxiliary)", height=256)
                supp_image2 = gr.Image(label="Additional ID image (auxiliary)", height=256)
                supp_image3 = gr.Image(label="Additional ID image (auxiliary)", height=256)
            prompt = gr.Textbox(label="Prompt", value='portrait,color,cinematic,in garden,soft light,detailed face')
            submit = gr.Button("Generate")
            neg_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT)
            scale = gr.Slider(
                label="CFG (recommend 2 for lightning model and 7 for non-accelerated model)",
                value=default_cfg,
                minimum=1,
                maximum=10,
                step=0.1,
            )
            seed = gr.Textbox(-1, label="Seed (-1 for random)")
            steps = gr.Slider(label="Steps", value=default_steps, minimum=1, maximum=30, step=1)
            with gr.Row():
                H = gr.Slider(label="Height", value=1152, minimum=512, maximum=2024, step=64)
                W = gr.Slider(label="Width", value=896, minimum=512, maximum=2024, step=64)
            with gr.Row(), gr.Accordion(
                "Advanced Options (adjust the trade-off between ID fidelity and editability)", open=False
            ):
                id_scale = gr.Slider(
                    label="ID scale (Increasing it enhances ID similarity but reduces editability)",
                    minimum=0,
                    maximum=5,
                    step=0.05,
                    value=0.8,
                    interactive=True,
                )
                num_zero = gr.Slider(
                    label="num zero (Increasing it enhances ID editability but reduces similarity)",
                    minimum=0,
                    maximum=80,
                    step=1,
                    value=20,
                    interactive=True,
                )
                ortho = gr.Dropdown(label="ortho", choices=['off', 'v1', 'v2'], value='v2', visible=False)

        with gr.Column():
            output = gr.Image(label="Generated Image")
            seed_output = gr.Textbox(label="Used Seed")
            intermediate_output = gr.Gallery(label='DebugImage', elem_id="gallery", visible=False)
            gr.Markdown(_CITE_)

    with gr.Row(), gr.Column():
        gr.Markdown("## Examples")
        if args.base == 'Lykon/dreamshaper-xl-lightning':
            gr.Examples(
                examples=dreamshaper_example_inps,
                inputs=[prompt, face_image, seed, id_scale, num_zero],
                label='dreamshaper-xl-lightning examples',
            )
        elif args.base == 'RunDiffusion/Juggernaut-XL-v9':
            gr.Examples(
                examples=jugger_example_inps,
                inputs=[prompt, face_image, seed, id_scale, num_zero],
                label='Juggernaut-XL-v9 examples',
            )

    inps = [
        face_image,
        supp_image1,
        supp_image2,
        supp_image3,
        prompt,
        neg_prompt,
        scale,
        seed,
        steps,
        H,
        W,
        id_scale,
        num_zero,
        ortho,
    ]
    submit.click(fn=run, inputs=inps, outputs=[output, seed_output, intermediate_output])

demo.launch(server_name='0.0.0.0', server_port=args.port)