videomatting / convert.py
sanghan's picture
Create convert.py
261ef4c
import torch
import av
import pims
import numpy as np
from typing import Optional, Tuple
from torchvision import transforms
from torch.utils.data import Dataset
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
class VideoReader(Dataset):
def __init__(self, path, transform=None):
self.video = pims.PyAVVideoReader(path)
self.rate = self.video.frame_rate
self.transform = transform
@property
def frame_rate(self):
return self.rate
def __len__(self):
return len(self.video)
def __getitem__(self, idx):
frame = self.video[idx]
frame = Image.fromarray(np.asarray(frame))
if self.transform is not None:
frame = self.transform(frame)
return frame
class VideoWriter:
def __init__(self, path, frame_rate, bit_rate=1000000):
self.container = av.open(path, mode="w")
self.stream = self.container.add_stream("h264", rate=f"{frame_rate:.4f}")
self.stream.pix_fmt = "yuv420p"
self.stream.bit_rate = bit_rate
def write(self, frames):
# frames: [T, C, H, W]
self.stream.width = frames.size(3)
self.stream.height = frames.size(2)
if frames.size(1) == 1:
frames = frames.repeat(1, 3, 1, 1) # convert grayscale to RGB
frames = frames.mul(255).byte().cpu().permute(0, 2, 3, 1).numpy()
for t in range(frames.shape[0]):
frame = frames[t]
frame = av.VideoFrame.from_ndarray(frame, format="rgb24")
self.container.mux(self.stream.encode(frame))
def close(self):
self.container.mux(self.stream.encode())
self.container.close()
def auto_downsample_ratio(h, w):
"""
Automatically find a downsample ratio so that the largest side of the resolution be 512px.
"""
return min(512 / max(h, w), 1)
def convert_video(
model,
input_source: str,
input_resize: Optional[Tuple[int, int]] = None,
downsample_ratio: Optional[float] = None,
output_composition: Optional[str] = None,
output_alpha: Optional[str] = None,
output_foreground: Optional[str] = None,
output_video_mbps: Optional[float] = None,
seq_chunk: int = 1,
num_workers: int = 0,
progress: bool = True,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
):
"""
Args:
input_source:A video file, or an image sequence directory. Images must be sorted in accending order, support png and jpg.
input_resize: If provided, the input are first resized to (w, h).
downsample_ratio: The model's downsample_ratio hyperparameter. If not provided, model automatically set one.
output_type: Options: ["video", "png_sequence"].
output_composition:
The composition output path. File path if output_type == 'video'. Directory path if output_type == 'png_sequence'.
If output_type == 'video', the composition has green screen background.
If output_type == 'png_sequence'. the composition is RGBA png images.
output_alpha: The alpha output from the model.
output_foreground: The foreground output from the model.
seq_chunk: Number of frames to process at once. Increase it for better parallelism.
num_workers: PyTorch's DataLoader workers. Only use >0 for image input.
progress: Show progress bar.
device: Only need to manually provide if model is a TorchScript freezed model.
dtype: Only need to manually provide if model is a TorchScript freezed model.
"""
assert downsample_ratio is None or (
downsample_ratio > 0 and downsample_ratio <= 1
), "Downsample ratio must be between 0 (exclusive) and 1 (inclusive)."
assert any(
[output_composition, output_alpha, output_foreground]
), "Must provide at least one output."
assert seq_chunk >= 1, "Sequence chunk must be >= 1"
assert num_workers >= 0, "Number of workers must be >= 0"
# Initialize transform
if input_resize is not None:
transform = transforms.Compose(
[transforms.Resize(input_resize[::-1]), transforms.ToTensor()]
)
else:
transform = transforms.ToTensor()
# Initialize reader
source = VideoReader(input_source, transform)
reader = DataLoader(
source, batch_size=seq_chunk, pin_memory=True, num_workers=num_workers
)
# Initialize writers
frame_rate = source.frame_rate if isinstance(source, VideoReader) else 30
output_video_mbps = 1 if output_video_mbps is None else output_video_mbps
if output_composition is not None:
writer_com = VideoWriter(
path=output_composition,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000),
)
if output_alpha is not None:
writer_pha = VideoWriter(
path=output_alpha,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000),
)
if output_foreground is not None:
writer_fgr = VideoWriter(
path=output_foreground,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000),
)
# Inference
model = model.eval()
if device is None or dtype is None:
param = next(model.parameters())
dtype = param.dtype
device = param.device
if output_composition is not None:
bgr = (
torch.tensor([0, 0, 0], device=device, dtype=dtype)
.div(255)
.view(1, 1, 3, 1, 1)
)
try:
with torch.no_grad():
bar = tqdm(total=len(source), disable=not progress, dynamic_ncols=True)
rec = [None] * 4
for src in reader:
if downsample_ratio is None:
downsample_ratio = auto_downsample_ratio(*src.shape[2:])
src = src.to(device, dtype, non_blocking=True).unsqueeze(
0
) # [B, T, C, H, W]
fgr, pha, *rec = model(src, *rec, downsample_ratio)
if output_foreground is not None:
writer_fgr.write(fgr[0])
if output_alpha is not None:
writer_pha.write(pha[0])
if output_composition is not None:
com = fgr * pha + bgr * (1 - pha)
writer_com.write(com[0])
bar.update(src.size(1))
finally:
# Clean up
if output_composition is not None:
writer_com.close()
if output_alpha is not None:
writer_pha.close()
if output_foreground is not None:
writer_fgr.close()