Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
from datasets import load_dataset, Image | |
from PIL import Image, ExifTags | |
MODELS = [ | |
"google/vit-base-patch16-224", #Classifição geral | |
"nateraw/vit-age-classifier" #Classifição de idade | |
] | |
DATASETS = [ | |
"Nunt/testedata", | |
"Nunt/backup_leonardo", | |
"Nunt/backup_leonardo_2024-02-06" | |
] | |
MAX_N_LABELS = 5 | |
SPLIT_TO_CLASSIFY = 'pasta' | |
COLS = st.columns([0.60, 0.40]) | |
SCROLLABLE_TEXT = COLS[1].container(height=500) | |
def extract_file_name(image_object): | |
file_name = image_object.filename | |
return file_name | |
def extract_index(file_name): | |
return "flag: todo" | |
def classify_full_dataset(shosen_dataset_name, chosen_model_name): | |
image_count = 0 | |
#modle instance | |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name) | |
#dataset | |
dataset = load_dataset(shosen_dataset_name,"testedata_readme") | |
for i in range(len(dataset)): | |
SCROLLABLE_TEXT.write("i-1:" + str(i-1)) | |
image_object = dataset['pasta'][i-1]["image"] | |
SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300) | |
file_name = extract_file_name(image_object) | |
SCROLLABLE_TEXT.write(f"file_name: {file_name}") | |
image_index = extract_index(file_name) | |
SCROLLABLE_TEXT.write(f"image_index: {image_index}") | |
image_object_texte_data = dataset['pasta'][i-1] | |
SCROLLABLE_TEXT.write(f"image_object_texte_data: {image_object_texte_data}") | |
SCROLLABLE_TEXT.write(f"teste1 (image_object._getexif()): {teste1}") | |
teste2 = image_object._getexif().items() | |
SCROLLABLE_TEXT.write(f"teste2 (image_object._getexif().items()): {teste2}") | |
#extract_metadata = { ExifTags.TAGS[k]: v for k, v in image_object._getexif().items() if k in ExifTags.TAGS } | |
#SCROLLABLE_TEXT.write(f"extract_metadata: {extract_metadata}") | |
#classification | |
classification_result = classifier_pipeline(image_object) | |
SCROLLABLE_TEXT.write(classification_result) | |
#TODO save classification result in dataset | |
image_count += 1 | |
SCROLLABLE_TEXT.write(f"Image count" + str(image_count)) | |
#SCROLLABLE_TEXT.write(image_count) | |
def main(): | |
COLS[0].write("# Bulk Image Classification App") | |
#with CONTAINER_BODY: | |
with COLS[0]: | |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.") | |
st.write("Soon we will have a dataset template") | |
#Model | |
chosen_model_name = COLS[0].selectbox("Select the model to use", MODELS, index=0) | |
if chosen_model_name is not None: | |
COLS[0].write("You selected") | |
COLS[0].write(chosen_model_name) | |
#Dataset | |
shosen_dataset_name = COLS[0].selectbox("Select the dataset to use", DATASETS, index=0) | |
if shosen_dataset_name is not None: | |
COLS[0].write("You selected") | |
COLS[0].write(shosen_dataset_name) | |
#click to classify | |
if chosen_model_name is not None and shosen_dataset_name is not None: | |
if COLS[0].button("Classify images"): | |
classify_full_dataset(shosen_dataset_name, chosen_model_name) | |
COLS[0].write("Classification result {classification_result}") | |
COLS[0].write("--- END ---") | |
#COLS[0].write(classification_result) | |
if __name__ == "__main__": | |
main() |