Spaces:
Running
on
TPU v5e
Running
on
TPU v5e
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
import requests | |
from flax import jax_utils | |
from flax.core.frozen_dict import freeze | |
from flax.training.common_utils import shard | |
from jax.sharding import PartitionSpec as P | |
from transformers import WhisperProcessor, is_tokenizers_available, WhisperFeatureExtractor, WhisperTokenizerFast | |
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE, WhisperTokenizer | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from transformers.utils import logging | |
from .modeling_flax_whisper import FlaxWhisperForConditionalGeneration | |
from .partitioner import PjitPartitioner | |
from .train_state import InferenceState | |
logger = logging.get_logger(__name__) | |
# 2D parameter and activation partitioning for DP | |
logical_axis_rules_dp = ( | |
("batch", "data"), | |
("mlp", None), | |
("heads", None), | |
("vocab", None), | |
("embed", None), | |
("embed", None), | |
("joined_kv", None), | |
("kv", None), | |
("length", None), | |
("num_mel", None), | |
("channels", None), | |
) | |
class FlaxWhisperPipline: | |
def __init__( | |
self, | |
checkpoint="openai/whisper-large-v2", | |
dtype=jnp.float32, | |
batch_size=None, | |
max_length=None, | |
): | |
""" | |
Args | |
checkpoint (`str`, *optional*, defaults to `"openai/whisper-large-v2"): | |
The Whisper checkpoint to use with the pipeline. Must be an available checkpoint on the Hugging Face Hub | |
with Flax weights. | |
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): | |
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and | |
`jax.numpy.bfloat16` (on TPUs). This can be used to enable half-precision inference on GPUs or TPUs. | |
If specified all the computation will be performed with the given `dtype`. **Note that this only | |
specifies the dtype of the computation and does not influence the dtype of model parameters.** | |
batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`): | |
The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing | |
a batch size in the `__init__` method will be superseded by any batch size passed to the `__call__` method. | |
max_length (`int`, *optional*): | |
The maximum numbers of tokens to generate. Defaults to `model.config.max_length`. | |
""" | |
self.checkpoint = checkpoint | |
self.dtype = dtype | |
self.processor = WhisperProcessor.from_pretrained(self.checkpoint) | |
self.feature_extractor = self.processor.feature_extractor | |
# potentially load fast tokenizer if available | |
tokenizer_cls = WhisperTokenizerFast if is_tokenizers_available() else WhisperTokenizer | |
self.tokenizer = tokenizer_cls.from_pretrained(checkpoint) | |
self.model, self.params = FlaxWhisperForConditionalGeneration.from_pretrained( | |
self.checkpoint, | |
_do_init=False, | |
dtype=self.dtype, | |
) | |
self.max_length = max_length if max_length is not None else self.model.generation_config.max_length | |
self.min_batch_size = jax.local_device_count() | |
self.batch_size = ( | |
batch_size if batch_size is not None else self.min_batch_size | |
) # we need a minimum of 1 batch per-device | |
def generate(params, input_features, forced_decoder_ids, return_timestamps): | |
output_ids = self.model.pipeline_generate( | |
input_features, | |
params=params, | |
forced_decoder_ids=forced_decoder_ids, | |
return_timestamps=return_timestamps, | |
max_length=self.max_length, | |
) | |
return output_ids | |
# use pmap for DP by default - this is compatible on a Colab TPU v2 | |
self.params = jax_utils.replicate(self.params) | |
self.p_generate = jax.pmap( | |
generate, "input_features", in_axes=(0, 0, None), out_axes=0, static_broadcasted_argnums=(3,) | |
) | |
self.is_sharded = False | |
def shard_params(self, num_mp_partitions=1, logical_axis_rules=logical_axis_rules_dp): | |
def init_fn(): | |
input_shape = (1, self.model.config.num_mel_bins, 2 * self.model.config.max_source_positions) | |
input_features = jnp.zeros(input_shape, dtype="f4") | |
input_features = input_features.at[(..., -1)].set(self.model.config.eos_token_id) | |
decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4") | |
decoder_attention_mask = jnp.ones_like(decoder_input_ids) | |
batch_size, sequence_length = decoder_input_ids.shape | |
decoder_position_ids = jnp.broadcast_to( | |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) | |
) | |
rng = jax.random.PRNGKey(0) | |
init_params = self.model.module.init( | |
rng, | |
input_features=input_features, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
decoder_position_ids=decoder_position_ids, | |
return_dict=False, | |
) | |
return init_params | |
# Axis names metadata | |
param_axes = jax.eval_shape(init_fn)["params_axes"] | |
# Create InferenceState, since the partitioner expects it | |
state = InferenceState( | |
step=jnp.array(0), | |
params=freeze(self.model.params_shape_tree), | |
params_axes=freeze(param_axes), | |
flax_mutables=None, | |
flax_mutables_axes=param_axes, | |
) | |
partitioner = PjitPartitioner(num_partitions=num_mp_partitions, logical_axis_rules=logical_axis_rules) | |
mesh_axes = partitioner.get_mesh_axes(state) | |
params_spec = mesh_axes.params | |
p_shard_params = partitioner.partition(self.model.to_bf16, (params_spec,), params_spec) | |
# This will auto-magically run in mesh context | |
self.params = p_shard_params(freeze(jax_utils.unreplicate(self.params))) | |
self.is_sharded = True | |
def generate(params, input_features, forced_decoder_ids, return_timestamps): | |
output_ids = self.model.pipeline_generate( | |
input_features, | |
params=params, | |
forced_decoder_ids=forced_decoder_ids, | |
return_timestamps=return_timestamps, | |
max_length=self.max_length, | |
) | |
return output_ids | |
# Use pjit for generate only once we've sharded the params | |
self.p_generate = partitioner.partition( | |
generate, | |
in_axis_resources=(params_spec, P("data"), None), | |
out_axis_resources=P("data"), | |
static_argnums=(3,), | |
) | |
def generate(self, input_features, language=None, task=None, return_timestamps=False): | |
forced_decoder_ids = self.get_forced_decoder_ids( | |
language=language, task=task, return_timestamps=return_timestamps | |
) | |
if not self.is_sharded: | |
# if we're using pmap we need to manually replicate the input data across devices and gather the output tokens | |
output_ids = self.p_generate( | |
freeze(self.params), shard(input_features), forced_decoder_ids, return_timestamps | |
).sequences | |
output_ids = jax.device_get(output_ids.reshape(-1, self.max_length)) | |
else: | |
# pjit handles replication / gathering for us auto-magically | |
output_ids = self.p_generate( | |
freeze(self.params), input_features, forced_decoder_ids, return_timestamps | |
).sequences | |
return output_ids | |
def get_forced_decoder_ids(self, generation_config=None, task=None, language=None, return_timestamps=False): | |
if generation_config is None: | |
generation_config = self.model.generation_config | |
if hasattr(generation_config, "is_multilingual"): | |
is_multilingual = generation_config.is_multilingual | |
else: | |
is_multilingual = None | |
forced_decoder_ids = [] | |
if is_multilingual: | |
if language is not None: | |
language = language.lower() | |
if language in generation_config.lang_to_id.keys(): | |
language_token = language | |
elif language in TO_LANGUAGE_CODE.values(): | |
language_token = f"<|{language}|>" | |
elif language in TO_LANGUAGE_CODE.keys(): | |
language_token = f"<|{TO_LANGUAGE_CODE[language]}|>" | |
else: | |
if len(language) == 2: | |
# ISO 639-1 language code | |
acceptable_languages = list(TO_LANGUAGE_CODE.values()) | |
elif "<" in language or "|" in language or ">" in language: | |
# generation config language code | |
acceptable_languages = list(generation_config.lang_to_id.keys()) | |
else: | |
# language passed as a string | |
acceptable_languages = list(TO_LANGUAGE_CODE.keys()) | |
raise ValueError( | |
f"Unsupported language: {language}. Language should be one of:" f" {acceptable_languages}." | |
) | |
forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) | |
if task is not None: | |
forced_decoder_ids.append((2, generation_config.task_to_id[task])) | |
else: | |
forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) | |
if not return_timestamps: | |
if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: | |
idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 | |
forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) | |
return forced_decoder_ids | |
def chunk_iter_with_batch(self, inputs, chunk_len, stride_left, stride_right, batch_size): | |
inputs_len = inputs.shape[0] | |
step = chunk_len - stride_left - stride_right | |
all_chunk_start_idx = np.arange(0, inputs_len, step) | |
num_samples = len(all_chunk_start_idx) | |
num_batches = math.ceil(num_samples / batch_size) | |
batch_idx = np.array_split(np.arange(num_samples), num_batches) | |
for idx in batch_idx: | |
chunk_start_idx = all_chunk_start_idx[idx] | |
chunk_end_idx = chunk_start_idx + chunk_len | |
chunks = [inputs[chunk_start:chunk_end] for chunk_start, chunk_end in zip(chunk_start_idx, chunk_end_idx)] | |
processed = self.feature_extractor( | |
chunks, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np" | |
) | |
_stride_left = np.where(chunk_start_idx == 0, 0, stride_left) | |
is_last = np.where(stride_right > 0, chunk_end_idx > inputs_len, chunk_end_idx >= inputs_len) | |
_stride_right = np.where(is_last, 0, stride_right) | |
chunk_lens = [chunk.shape[0] for chunk in chunks] | |
strides = [ | |
(chunk_l, _stride_l, _stride_r) | |
for chunk_l, _stride_l, _stride_r in zip(chunk_lens, _stride_left, _stride_right) | |
] | |
yield {"stride": strides, **processed} | |
def preprocess_batch(self, inputs, chunk_length_s=30.0, stride_length_s=None, batch_size=None): | |
if isinstance(inputs, np.ndarray): | |
logger.warning( | |
"Numpy array passed as input - no sampling rate checks will be performed." | |
"It is strongly recommended to pass the input as a dictionary with an 'array' key " | |
"containing the numpy array representing the audio, and a 'sampling_rate' key " | |
"containing the sampling rate associated with the audio array." | |
"Failing to do so can result in silent errors that might be hard to debug." | |
) | |
if isinstance(inputs, str): | |
if inputs.startswith("http://") or inputs.startswith("https://"): | |
# We need to actually check for a real protocol, otherwise it's impossible to use a local file | |
# like http_huggingface_co.png | |
inputs = requests.get(inputs).content | |
else: | |
with open(inputs, "rb") as f: | |
inputs = f.read() | |
if isinstance(inputs, bytes): | |
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) | |
stride = None | |
if isinstance(inputs, dict): | |
stride = inputs.get("stride", None) | |
# Accepting `"array"` which is the key defined in `datasets` for | |
# better integration | |
if not ("sampling_rate" in inputs and "array" in inputs): | |
raise ValueError( | |
"When passing a dictionary to FlaxWhisperPipline, the dict needs to contain an 'array' key " | |
"containing the numpy array representing the audio, and a 'sampling_rate' key " | |
"containing the sampling rate associated with the audio array." | |
) | |
in_sampling_rate = inputs.get("sampling_rate") | |
inputs = inputs.get("array", None) | |
if in_sampling_rate != self.feature_extractor.sampling_rate: | |
try: | |
import librosa | |
except ImportError as err: | |
raise ImportError( | |
"To support resampling audio files, please install 'librosa' and 'soundfile'." | |
) from err | |
inputs = librosa.resample( | |
inputs, orig_sr=in_sampling_rate, target_sr=self.feature_extractor.sampling_rate | |
) | |
ratio = self.feature_extractor.sampling_rate / in_sampling_rate | |
else: | |
ratio = 1 | |
if not isinstance(inputs, np.ndarray): | |
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") | |
if len(inputs.shape) != 1: | |
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") | |
if stride is not None: | |
if stride[0] + stride[1] > inputs.shape[0]: | |
raise ValueError("Stride is too large for input") | |
# Stride needs to get the chunk length here, it's going to get | |
# swallowed by the `feature_extractor` later, and then batching | |
# can add extra data in the inputs, so we need to keep track | |
# of the original length in the stride so we can cut properly. | |
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) | |
if chunk_length_s: | |
if stride_length_s is None: | |
stride_length_s = chunk_length_s / 6 | |
if isinstance(stride_length_s, (int, float)): | |
stride_length_s = [stride_length_s, stride_length_s] | |
chunk_len = round(chunk_length_s * self.feature_extractor.sampling_rate) | |
stride_left = round(stride_length_s[0] * self.feature_extractor.sampling_rate) | |
stride_right = round(stride_length_s[1] * self.feature_extractor.sampling_rate) | |
if chunk_len < stride_left + stride_right: | |
raise ValueError("Chunk length must be superior to stride length") | |
for item in self.chunk_iter_with_batch( | |
inputs, | |
chunk_len, | |
stride_left, | |
stride_right, | |
batch_size, | |
): | |
yield item | |
else: | |
processed = self.feature_extractor( | |
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="np" | |
) | |
if stride is not None: | |
processed["stride"] = stride | |
yield processed | |
def postprocess(self, model_outputs, return_timestamps=None, return_language=None): | |
# unpack the outputs from list(dict(list)) to list(dict) | |
model_outputs = [dict(zip(output, t)) for output in model_outputs for t in zip(*output.values())] | |
time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions | |
# Send the chunking back to seconds, it's easier to handle in whisper | |
sampling_rate = self.feature_extractor.sampling_rate | |
for output in model_outputs: | |
if "stride" in output: | |
chunk_len, stride_left, stride_right = output["stride"] | |
# Go back in seconds | |
chunk_len /= sampling_rate | |
stride_left /= sampling_rate | |
stride_right /= sampling_rate | |
output["stride"] = chunk_len, stride_left, stride_right | |
text, optional = self.tokenizer._decode_asr( | |
model_outputs, | |
return_timestamps=return_timestamps, | |
return_language=return_language, | |
time_precision=time_precision, | |
) | |
return {"text": text, **optional} | |
def forward(self, model_inputs, batch_size=None, language=None, task=None, return_timestamps=False): | |
# We need to keep track of some additional input arguments for post-processing so need to forward these on after running generation | |
input_features = model_inputs.pop("input_features") | |
input_batch_size = input_features.shape[0] | |
if input_batch_size != batch_size: | |
padding = np.zeros([batch_size - input_batch_size, *input_features.shape[1:]], input_features.dtype) | |
input_features = np.concatenate([input_features, padding]) | |
pred_ids = self.generate(input_features, language=language, task=task, return_timestamps=return_timestamps)[ | |
:input_batch_size | |
] | |
# tokenizer's decode method expects an extra dim - we insert it here for convenience | |
out = {"tokens": pred_ids[:, None, :]} | |
stride = model_inputs.pop("stride", None) | |
if stride is not None: | |
out["stride"] = stride | |
return out | |
def __call__( | |
self, | |
inputs, | |
chunk_length_s=30.0, | |
stride_length_s=None, | |
batch_size=None, | |
language=None, | |
task=None, | |
return_timestamps=None, | |
generate_kwargs=None, | |
): | |
""" | |
Transcribe an audio input sequence to a text transcription, optionally with timestamps. | |
Args: | |
inputs (`np.ndarray` or `bytes` or `str` or `dict`): | |
The inputs is either: | |
- `str` that is the filename of the audio file, the file will be read at the correct sampling rate | |
to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system. | |
- `bytes` is the byte content of an audio file and is interpreted by *ffmpeg* in the | |
same way. | |
- (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`) | |
Raw audio assumed to be at the correct sampling rate (16kHz). Note that no further sampling | |
rate check will be done. | |
- `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this | |
pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "array": | |
np.array}`. Optionally an additional argument `"stride": (left: int, right: int)` can be used to | |
ask the pipeline to treat the first `left` samples and last `right` samples to be ignored in | |
decoding (but used at inference to provide more context to the model). In general, this additional | |
stride argument is not required. | |
chunk_length_s (`float`, *optional*, defaults to 30.0): | |
The input length for each chunk. If `chunk_length_s = 0` then chunking is disabled. By default, the chunk | |
length is set 30.0s, equal to Whisper's context window. | |
stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`): | |
The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables | |
the model to *see* more context and infer letters better than without this context but the pipeline | |
discards the stride bits at the end to make the final reconstitution as perfect as possible. | |
<Tip> | |
For more information on how to effectively use `stride_length_s`, refer to the [ASR chunking | |
blog post](https://huggingface.co./blog/asr-chunking). | |
</Tip> | |
batch_size (`int`, *optional*, defaults to the minimum per-device batch size, i.e. `jax.local_device_count()`): | |
The batch size to be used in chunking transcription. Beneficial for transcribing long audio files. Passing | |
a batch size in the `__call__` method will supersede any batch size passed to the `__init__`. | |
task (`str`, *optional*): | |
Task to use for generation, either `"transcribe"` or `"translate"`. Defaults to `"transcribe"`. | |
language (`str`, *optional*): | |
Language token to use for generation, can be either in the form of `"<|en|>"`, `"en"` or `"english"`. | |
Defaults to `None`, meaning the language is automatically inferred from the audio input. | |
return_timestamps (*optional*, `bool`): | |
Whether to return timestamps in the prediction. Defaults to False. If set to true, the pipeline | |
will return two keys in the output dictionary: `"text"` containing the text transcription, and `"chunks"` | |
containing the transcription segments chunked by their utterance-level timestamps. | |
Return: | |
`Dict`: A dictionary with the following keys: | |
- **text** (`str` ) -- The recognised text. | |
- **chunks** (*optional(, `List[Dict]`) | |
When using `return_timestamps`, the `chunks` will become a list containing all the various text | |
chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamps": (0.5,0.9), {"text": | |
"there", "timestamps": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing | |
`"".join(chunk["text"] for chunk in output["chunks"])`. | |
""" | |
batch_size = batch_size if batch_size is not None else self.batch_size | |
if batch_size % self.min_batch_size != 0: | |
raise ValueError( | |
f"Batch size must be a multiple of the number of JAX devices, but got batch size {batch_size} and num devices {self.min_batch_size}." | |
) | |
dataloader = self.preprocess_batch( | |
inputs, chunk_length_s=chunk_length_s, stride_length_s=stride_length_s, batch_size=batch_size | |
) | |
model_outputs = [] | |
# iterate over our chunked audio samples | |
for batch in dataloader: | |
model_outputs.append( | |
self.forward( | |
batch, batch_size=batch_size, language=language, task=task, return_timestamps=return_timestamps | |
) | |
) | |
post_processed = self.postprocess(model_outputs, return_timestamps=return_timestamps) | |
return post_processed | |