Spaces:
Sleeping
Sleeping
# Imports | |
import gradio as gr | |
import tensorflow_io as tfio | |
from speechbrain.pretrained import EncoderClassifier | |
import torchaudio | |
from sklearn.linear_model import LogisticRegression | |
import joblib | |
import tensorflow as tf | |
import numpy as np | |
# Utility function for loading audio files and making sure the sample rate is correct. | |
def load_wav_16k_mono(filename): | |
"""Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio.""" | |
file_contents = tf.io.read_file(filename) | |
wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1) | |
wav = tf.squeeze(wav, axis=-1) | |
sample_rate = tf.cast(sample_rate, dtype=tf.int64) | |
wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000) | |
return wav | |
def extract_audio_embeddings(model, wav_audio_file_path: str) -> tuple: | |
"""Feature extractor that embeds audio into a vector.""" | |
signal, fs = torchaudio.load(wav_audio_file_path) # Reformat audio signal into a tensor | |
embeddings = model.encode_batch( | |
signal | |
) # Pass tensor through pretrained neural net and extract representation | |
return embeddings | |
def detect_snoring(audio): | |
feature_extractor = EncoderClassifier.from_hparams( | |
"speechbrain/spkrec-xvect-voxceleb", | |
# run_opts={"device":"cuda"} # Uncomment this to run on GPU if you have one (optional) | |
) | |
filename = 'finalized_model.sav' | |
model = joblib.load(filename) | |
embeddings = extract_audio_embeddings(feature_extractor, audio) | |
embeddings_array = embeddings.cpu().numpy()[0] | |
output = model.predict_proba(embeddings_array) | |
output = np.round(output[:, 1]) | |
if 1 in output: | |
output = "Snoring detected" | |
else: | |
output = "Snoring is not detected" | |
return output | |
# Defining the audio filepaths | |
audio = gr.inputs.Audio(type="filepath") | |
# Loading the gradio framwork | |
iface = gr.Interface(fn=detect_snoring,inputs=audio, outputs="text", title="Snore.AI", description="Detect Snotring with artificial intelligence.") | |
iface.launch() |