import os from ultralytics import YOLO PROJECT_DIR = os.path.dirname(os.path.dirname(__file__)) # load a pretrained model (recommended for training) model = YOLO('yolov8n.pt') os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' out_path = os.path.join(PROJECT_DIR, 'output') data_path = os.path.join(PROJECT_DIR, 'data', 'custom_data.yaml') # train on the pretrained model results = model.train( data=data_path, imgsz=640, epochs=2, batch=32, project=out_path, name='yolov8n_custom', save_period=2 ) # evaluate model performance on the validation set results = model.val(project=out_path)