import os import cv2 from ultralytics import YOLO PROJECT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')) yolo_model = os.path.join(PROJECT_DIR, "output", "yolov8n_custom", "weights", "best.pt") # Load the YOLOv8 model model = YOLO(yolo_model) # Open the video file video_path = os.path.join(PROJECT_DIR, "data_for_inference", "video", "vid_39_1284-2_11.mp4") cap = cv2.VideoCapture(video_path) display_size = (800, 600) # Loop through the video frames while cap.isOpened(): # Read a frame from the video success, frame = cap.read() if success: # Run YOLOv8 inference on the frame # save plotted images plotted_result_path = os.path.join(PROJECT_DIR, "scripts", "inference") results = model.predict(source=frame, save=True, conf=0.2, project=plotted_result_path) # Visualize the results on the frame annotated_frame = results[0].plot() # resize the frame to fit the display window annotated_frame = cv2.resize(annotated_frame, display_size) # Display the annotated frame cv2.imshow("YOLOv8 Inference", annotated_frame) # Break the loop if 'q' is pressed if cv2.waitKey(1) & 0xFF == ord("q"): break else: # Break the loop if the end of the video is reached break # Release the video capture object and close the display window cap.release() cv2.destroyAllWindows()