diff --git a/GroundingDINO/LICENSE b/GroundingDINO/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..b1395e94b016dd1b95b4c7e3ed493e1d0b342917 --- /dev/null +++ b/GroundingDINO/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2020 - present, Facebook, Inc + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/GroundingDINO/README.md b/GroundingDINO/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b6610df03d409633e572ef49d67a445d35a63967 --- /dev/null +++ b/GroundingDINO/README.md @@ -0,0 +1,163 @@ +# Grounding DINO + +--- + +[![arXiv](https://img.shields.io/badge/arXiv-2303.05499-b31b1b.svg)](https://arxiv.org/abs/2303.05499) +[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/wxWDt5UiwY8) +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) +[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/cMa77r3YrDk) +[![HuggingFace space](https://img.shields.io/badge/🤗-HuggingFace%20Space-cyan.svg)](https://huggingface.co./spaces/ShilongLiu/Grounding_DINO_demo) + +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-mscoco)](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) \ +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-odinw)](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \ +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) \ +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded) + + + +Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now! + + +## Highlight + +- **Open-Set Detection.** Detect **everything** with language! +- **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**. +- **Flexible.** Collaboration with Stable Diffusion for Image Editting. + +## News +[2023/03/28] A YouTube [video](https://youtu.be/cMa77r3YrDk) about Grounding DINO and basic object detection prompt engineering. [[SkalskiP](https://github.com/SkalskiP)] \ +[2023/03/28] Add a [demo](https://huggingface.co./spaces/ShilongLiu/Grounding_DINO_demo) on Hugging Face Space! \ +[2023/03/27] Support CPU-only mode. Now the model can run on machines without GPUs.\ +[2023/03/25] A [demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) for Grounding DINO is available at Colab. [[SkalskiP](https://github.com/SkalskiP)] \ +[2023/03/22] Code is available Now! + +
+ +Description + +ODinW +
+ + + +## TODO + +- [x] Release inference code and demo. +- [x] Release checkpoints. +- [ ] Grounding DINO with Stable Diffusion and GLIGEN demos. +- [ ] Release training codes. + +## Install + +If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set. It will be compiled under CPU-only mode if no CUDA available. + +```bash +pip install -e . +``` + +## Demo + +```bash +CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \ + -c /path/to/config \ + -p /path/to/checkpoint \ + -i .asset/cats.png \ + -o "outputs/0" \ + -t "cat ear." \ + [--cpu-only] # open it for cpu mode +``` +See the `demo/inference_on_a_image.py` for more details. + +**Web UI** + +We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details. + +## Checkpoints + + + + + + + + + + + + + + + + + + + + + + + + + +
namebackboneDatabox AP on COCOCheckpointConfig
1GroundingDINO-TSwin-TO365,GoldG,Cap4M48.4 (zero-shot) / 57.2 (fine-tune)Github link | HF linklink
+ +## Results + +
+ +COCO Object Detection Results + +COCO +
+ +
+ +ODinW Object Detection Results + +ODinW +
+ +
+ +Marrying Grounding DINO with Stable Diffusion for Image Editing + +GD_SD +
+ +
+ +Marrying Grounding DINO with GLIGEN for more Detailed Image Editing + +GD_GLIGEN +
+ +## Model + +Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder. + +![arch](.asset/arch.png) + + +## Acknowledgement + +Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work! + +We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well. + +Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models. + + +## Citation + +If you find our work helpful for your research, please consider citing the following BibTeX entry. + +```bibtex +@inproceedings{ShilongLiu2023GroundingDM, + title={Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection}, + author={Shilong Liu and Zhaoyang Zeng and Tianhe Ren and Feng Li and Hao Zhang and Jie Yang and Chunyuan Li and Jianwei Yang and Hang Su and Jun Zhu and Lei Zhang}, + year={2023} +} +``` + + + + diff --git a/GroundingDINO/demo/gradio_app.py b/GroundingDINO/demo/gradio_app.py new file mode 100644 index 0000000000000000000000000000000000000000..15e08323f485291df8b53eefd4691c087d7863f7 --- /dev/null +++ b/GroundingDINO/demo/gradio_app.py @@ -0,0 +1,125 @@ +import argparse +from functools import partial +import cv2 +import requests +import os +from io import BytesIO +from PIL import Image +import numpy as np +from pathlib import Path + + +import warnings + +import torch + +# prepare the environment +os.system("python setup.py build develop --user") +os.system("pip install packaging==21.3") +os.system("pip install gradio") + + +warnings.filterwarnings("ignore") + +import gradio as gr + +from groundingdino.models import build_model +from groundingdino.util.slconfig import SLConfig +from groundingdino.util.utils import clean_state_dict +from groundingdino.util.inference import annotate, load_image, predict +import groundingdino.datasets.transforms as T + +from huggingface_hub import hf_hub_download + + + +# Use this command for evaluate the GLIP-T model +config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py" +ckpt_repo_id = "ShilongLiu/GroundingDINO" +ckpt_filenmae = "groundingdino_swint_ogc.pth" + + +def load_model_hf(model_config_path, repo_id, filename, device='cpu'): + args = SLConfig.fromfile(model_config_path) + model = build_model(args) + args.device = device + + cache_file = hf_hub_download(repo_id=repo_id, filename=filename) + checkpoint = torch.load(cache_file, map_location='cpu') + log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) + print("Model loaded from {} \n => {}".format(cache_file, log)) + _ = model.eval() + return model + +def image_transform_grounding(init_image): + transform = T.Compose([ + T.RandomResize([800], max_size=1333), + T.ToTensor(), + T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]) + image, _ = transform(init_image, None) # 3, h, w + return init_image, image + +def image_transform_grounding_for_vis(init_image): + transform = T.Compose([ + T.RandomResize([800], max_size=1333), + ]) + image, _ = transform(init_image, None) # 3, h, w + return image + +model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) + +def run_grounding(input_image, grounding_caption, box_threshold, text_threshold): + init_image = input_image.convert("RGB") + original_size = init_image.size + + _, image_tensor = image_transform_grounding(init_image) + image_pil: Image = image_transform_grounding_for_vis(init_image) + + # run grounidng + boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu') + annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases) + image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)) + + + return image_with_box + +if __name__ == "__main__": + + parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True) + parser.add_argument("--debug", action="store_true", help="using debug mode") + parser.add_argument("--share", action="store_true", help="share the app") + args = parser.parse_args() + + block = gr.Blocks().queue() + with block: + gr.Markdown("# [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO)") + gr.Markdown("### Open-World Detection with Grounding DINO") + + with gr.Row(): + with gr.Column(): + input_image = gr.Image(source='upload', type="pil") + grounding_caption = gr.Textbox(label="Detection Prompt") + run_button = gr.Button(label="Run") + with gr.Accordion("Advanced options", open=False): + box_threshold = gr.Slider( + label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 + ) + text_threshold = gr.Slider( + label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 + ) + + with gr.Column(): + gallery = gr.outputs.Image( + type="pil", + # label="grounding results" + ).style(full_width=True, full_height=True) + # gallery = gr.Gallery(label="Generated images", show_label=False).style( + # grid=[1], height="auto", container=True, full_width=True, full_height=True) + + run_button.click(fn=run_grounding, inputs=[ + input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery]) + + + block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share) + diff --git a/GroundingDINO/demo/inference_on_a_image.py b/GroundingDINO/demo/inference_on_a_image.py new file mode 100644 index 0000000000000000000000000000000000000000..207227b7419df8db7a6f0206361670287cf4d9fa --- /dev/null +++ b/GroundingDINO/demo/inference_on_a_image.py @@ -0,0 +1,172 @@ +import argparse +import os +import sys + +import numpy as np +import torch +from PIL import Image, ImageDraw, ImageFont + +import groundingdino.datasets.transforms as T +from groundingdino.models import build_model +from groundingdino.util import box_ops +from groundingdino.util.slconfig import SLConfig +from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap + + +def plot_boxes_to_image(image_pil, tgt): + H, W = tgt["size"] + boxes = tgt["boxes"] + labels = tgt["labels"] + assert len(boxes) == len(labels), "boxes and labels must have same length" + + draw = ImageDraw.Draw(image_pil) + mask = Image.new("L", image_pil.size, 0) + mask_draw = ImageDraw.Draw(mask) + + # draw boxes and masks + for box, label in zip(boxes, labels): + # from 0..1 to 0..W, 0..H + box = box * torch.Tensor([W, H, W, H]) + # from xywh to xyxy + box[:2] -= box[2:] / 2 + box[2:] += box[:2] + # random color + color = tuple(np.random.randint(0, 255, size=3).tolist()) + # draw + x0, y0, x1, y1 = box + x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) + + draw.rectangle([x0, y0, x1, y1], outline=color, width=6) + # draw.text((x0, y0), str(label), fill=color) + + font = ImageFont.load_default() + if hasattr(font, "getbbox"): + bbox = draw.textbbox((x0, y0), str(label), font) + else: + w, h = draw.textsize(str(label), font) + bbox = (x0, y0, w + x0, y0 + h) + # bbox = draw.textbbox((x0, y0), str(label)) + draw.rectangle(bbox, fill=color) + draw.text((x0, y0), str(label), fill="white") + + mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) + + return image_pil, mask + + +def load_image(image_path): + # load image + image_pil = Image.open(image_path).convert("RGB") # load image + + transform = T.Compose( + [ + T.RandomResize([800], max_size=1333), + T.ToTensor(), + T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), + ] + ) + image, _ = transform(image_pil, None) # 3, h, w + return image_pil, image + + +def load_model(model_config_path, model_checkpoint_path, cpu_only=False): + args = SLConfig.fromfile(model_config_path) + args.device = "cuda" if not cpu_only else "cpu" + model = build_model(args) + checkpoint = torch.load(model_checkpoint_path, map_location="cpu") + load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) + print(load_res) + _ = model.eval() + return model + + +def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, cpu_only=False): + caption = caption.lower() + caption = caption.strip() + if not caption.endswith("."): + caption = caption + "." + device = "cuda" if not cpu_only else "cpu" + model = model.to(device) + image = image.to(device) + with torch.no_grad(): + outputs = model(image[None], captions=[caption]) + logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) + boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) + logits.shape[0] + + # filter output + logits_filt = logits.clone() + boxes_filt = boxes.clone() + filt_mask = logits_filt.max(dim=1)[0] > box_threshold + logits_filt = logits_filt[filt_mask] # num_filt, 256 + boxes_filt = boxes_filt[filt_mask] # num_filt, 4 + logits_filt.shape[0] + + # get phrase + tokenlizer = model.tokenizer + tokenized = tokenlizer(caption) + # build pred + pred_phrases = [] + for logit, box in zip(logits_filt, boxes_filt): + pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) + if with_logits: + pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") + else: + pred_phrases.append(pred_phrase) + + return boxes_filt, pred_phrases + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser("Grounding DINO example", add_help=True) + parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file") + parser.add_argument( + "--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file" + ) + parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file") + parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt") + parser.add_argument( + "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory" + ) + + parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold") + parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold") + + parser.add_argument("--cpu-only", action="store_true", help="running on cpu only!, default=False") + args = parser.parse_args() + + # cfg + config_file = args.config_file # change the path of the model config file + checkpoint_path = args.checkpoint_path # change the path of the model + image_path = args.image_path + text_prompt = args.text_prompt + output_dir = args.output_dir + box_threshold = args.box_threshold + text_threshold = args.text_threshold + + # make dir + os.makedirs(output_dir, exist_ok=True) + # load image + image_pil, image = load_image(image_path) + # load model + model = load_model(config_file, checkpoint_path, cpu_only=args.cpu_only) + + # visualize raw image + image_pil.save(os.path.join(output_dir, "raw_image.jpg")) + + # run model + boxes_filt, pred_phrases = get_grounding_output( + model, image, text_prompt, box_threshold, text_threshold, cpu_only=args.cpu_only + ) + + # visualize pred + size = image_pil.size + pred_dict = { + "boxes": boxes_filt, + "size": [size[1], size[0]], # H,W + "labels": pred_phrases, + } + # import ipdb; ipdb.set_trace() + image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0] + image_with_box.save(os.path.join(output_dir, "pred.jpg")) diff --git a/GroundingDINO/groundingdino/__init__.py b/GroundingDINO/groundingdino/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/GroundingDINO/groundingdino/config/GroundingDINO_SwinB.cfg.py b/GroundingDINO/groundingdino/config/GroundingDINO_SwinB.cfg.py new file mode 100644 index 0000000000000000000000000000000000000000..f490c4bbd598a35de43d36ceafcbd769e7ff21bf --- /dev/null +++ b/GroundingDINO/groundingdino/config/GroundingDINO_SwinB.cfg.py @@ -0,0 +1,43 @@ +batch_size = 1 +modelname = "groundingdino" +backbone = "swin_B_384_22k" +position_embedding = "sine" +pe_temperatureH = 20 +pe_temperatureW = 20 +return_interm_indices = [1, 2, 3] +backbone_freeze_keywords = None +enc_layers = 6 +dec_layers = 6 +pre_norm = False +dim_feedforward = 2048 +hidden_dim = 256 +dropout = 0.0 +nheads = 8 +num_queries = 900 +query_dim = 4 +num_patterns = 0 +num_feature_levels = 4 +enc_n_points = 4 +dec_n_points = 4 +two_stage_type = "standard" +two_stage_bbox_embed_share = False +two_stage_class_embed_share = False +transformer_activation = "relu" +dec_pred_bbox_embed_share = True +dn_box_noise_scale = 1.0 +dn_label_noise_ratio = 0.5 +dn_label_coef = 1.0 +dn_bbox_coef = 1.0 +embed_init_tgt = True +dn_labelbook_size = 2000 +max_text_len = 256 +text_encoder_type = "bert-base-uncased" +use_text_enhancer = True +use_fusion_layer = True +use_checkpoint = True +use_transformer_ckpt = True +use_text_cross_attention = True +text_dropout = 0.0 +fusion_dropout = 0.0 +fusion_droppath = 0.1 +sub_sentence_present = True diff --git a/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py b/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py new file mode 100644 index 0000000000000000000000000000000000000000..9158d5f6260ec74bded95377d382387430d7cd70 --- /dev/null +++ b/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py @@ -0,0 +1,43 @@ +batch_size = 1 +modelname = "groundingdino" +backbone = "swin_T_224_1k" +position_embedding = "sine" +pe_temperatureH = 20 +pe_temperatureW = 20 +return_interm_indices = [1, 2, 3] +backbone_freeze_keywords = None +enc_layers = 6 +dec_layers = 6 +pre_norm = False +dim_feedforward = 2048 +hidden_dim = 256 +dropout = 0.0 +nheads = 8 +num_queries = 900 +query_dim = 4 +num_patterns = 0 +num_feature_levels = 4 +enc_n_points = 4 +dec_n_points = 4 +two_stage_type = "standard" +two_stage_bbox_embed_share = False +two_stage_class_embed_share = False +transformer_activation = "relu" +dec_pred_bbox_embed_share = True +dn_box_noise_scale = 1.0 +dn_label_noise_ratio = 0.5 +dn_label_coef = 1.0 +dn_bbox_coef = 1.0 +embed_init_tgt = True +dn_labelbook_size = 2000 +max_text_len = 256 +text_encoder_type = "bert-base-uncased" +use_text_enhancer = True +use_fusion_layer = True +use_checkpoint = True +use_transformer_ckpt = True +use_text_cross_attention = True +text_dropout = 0.0 +fusion_dropout = 0.0 +fusion_droppath = 0.1 +sub_sentence_present = True diff --git a/GroundingDINO/groundingdino/datasets/__init__.py b/GroundingDINO/groundingdino/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/GroundingDINO/groundingdino/datasets/transforms.py b/GroundingDINO/groundingdino/datasets/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..91cf9269e4b31008a3ddca34a19b038a9b399991 --- /dev/null +++ b/GroundingDINO/groundingdino/datasets/transforms.py @@ -0,0 +1,311 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +""" +Transforms and data augmentation for both image + bbox. +""" +import os +import random + +import PIL +import torch +import torchvision.transforms as T +import torchvision.transforms.functional as F + +from groundingdino.util.box_ops import box_xyxy_to_cxcywh +from groundingdino.util.misc import interpolate + + +def crop(image, target, region): + cropped_image = F.crop(image, *region) + + target = target.copy() + i, j, h, w = region + + # should we do something wrt the original size? + target["size"] = torch.tensor([h, w]) + + fields = ["labels", "area", "iscrowd", "positive_map"] + + if "boxes" in target: + boxes = target["boxes"] + max_size = torch.as_tensor([w, h], dtype=torch.float32) + cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) + cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) + cropped_boxes = cropped_boxes.clamp(min=0) + area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) + target["boxes"] = cropped_boxes.reshape(-1, 4) + target["area"] = area + fields.append("boxes") + + if "masks" in target: + # FIXME should we update the area here if there are no boxes? + target["masks"] = target["masks"][:, i : i + h, j : j + w] + fields.append("masks") + + # remove elements for which the boxes or masks that have zero area + if "boxes" in target or "masks" in target: + # favor boxes selection when defining which elements to keep + # this is compatible with previous implementation + if "boxes" in target: + cropped_boxes = target["boxes"].reshape(-1, 2, 2) + keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) + else: + keep = target["masks"].flatten(1).any(1) + + for field in fields: + if field in target: + target[field] = target[field][keep] + + if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO": + # for debug and visualization only. + if "strings_positive" in target: + target["strings_positive"] = [ + _i for _i, _j in zip(target["strings_positive"], keep) if _j + ] + + return cropped_image, target + + +def hflip(image, target): + flipped_image = F.hflip(image) + + w, h = image.size + + target = target.copy() + if "boxes" in target: + boxes = target["boxes"] + boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor( + [w, 0, w, 0] + ) + target["boxes"] = boxes + + if "masks" in target: + target["masks"] = target["masks"].flip(-1) + + return flipped_image, target + + +def resize(image, target, size, max_size=None): + # size can be min_size (scalar) or (w, h) tuple + + def get_size_with_aspect_ratio(image_size, size, max_size=None): + w, h = image_size + if max_size is not None: + min_original_size = float(min((w, h))) + max_original_size = float(max((w, h))) + if max_original_size / min_original_size * size > max_size: + size = int(round(max_size * min_original_size / max_original_size)) + + if (w <= h and w == size) or (h <= w and h == size): + return (h, w) + + if w < h: + ow = size + oh = int(size * h / w) + else: + oh = size + ow = int(size * w / h) + + return (oh, ow) + + def get_size(image_size, size, max_size=None): + if isinstance(size, (list, tuple)): + return size[::-1] + else: + return get_size_with_aspect_ratio(image_size, size, max_size) + + size = get_size(image.size, size, max_size) + rescaled_image = F.resize(image, size) + + if target is None: + return rescaled_image, None + + ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) + ratio_width, ratio_height = ratios + + target = target.copy() + if "boxes" in target: + boxes = target["boxes"] + scaled_boxes = boxes * torch.as_tensor( + [ratio_width, ratio_height, ratio_width, ratio_height] + ) + target["boxes"] = scaled_boxes + + if "area" in target: + area = target["area"] + scaled_area = area * (ratio_width * ratio_height) + target["area"] = scaled_area + + h, w = size + target["size"] = torch.tensor([h, w]) + + if "masks" in target: + target["masks"] = ( + interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5 + ) + + return rescaled_image, target + + +def pad(image, target, padding): + # assumes that we only pad on the bottom right corners + padded_image = F.pad(image, (0, 0, padding[0], padding[1])) + if target is None: + return padded_image, None + target = target.copy() + # should we do something wrt the original size? + target["size"] = torch.tensor(padded_image.size[::-1]) + if "masks" in target: + target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1])) + return padded_image, target + + +class ResizeDebug(object): + def __init__(self, size): + self.size = size + + def __call__(self, img, target): + return resize(img, target, self.size) + + +class RandomCrop(object): + def __init__(self, size): + self.size = size + + def __call__(self, img, target): + region = T.RandomCrop.get_params(img, self.size) + return crop(img, target, region) + + +class RandomSizeCrop(object): + def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False): + # respect_boxes: True to keep all boxes + # False to tolerence box filter + self.min_size = min_size + self.max_size = max_size + self.respect_boxes = respect_boxes + + def __call__(self, img: PIL.Image.Image, target: dict): + init_boxes = len(target["boxes"]) + max_patience = 10 + for i in range(max_patience): + w = random.randint(self.min_size, min(img.width, self.max_size)) + h = random.randint(self.min_size, min(img.height, self.max_size)) + region = T.RandomCrop.get_params(img, [h, w]) + result_img, result_target = crop(img, target, region) + if ( + not self.respect_boxes + or len(result_target["boxes"]) == init_boxes + or i == max_patience - 1 + ): + return result_img, result_target + return result_img, result_target + + +class CenterCrop(object): + def __init__(self, size): + self.size = size + + def __call__(self, img, target): + image_width, image_height = img.size + crop_height, crop_width = self.size + crop_top = int(round((image_height - crop_height) / 2.0)) + crop_left = int(round((image_width - crop_width) / 2.0)) + return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) + + +class RandomHorizontalFlip(object): + def __init__(self, p=0.5): + self.p = p + + def __call__(self, img, target): + if random.random() < self.p: + return hflip(img, target) + return img, target + + +class RandomResize(object): + def __init__(self, sizes, max_size=None): + assert isinstance(sizes, (list, tuple)) + self.sizes = sizes + self.max_size = max_size + + def __call__(self, img, target=None): + size = random.choice(self.sizes) + return resize(img, target, size, self.max_size) + + +class RandomPad(object): + def __init__(self, max_pad): + self.max_pad = max_pad + + def __call__(self, img, target): + pad_x = random.randint(0, self.max_pad) + pad_y = random.randint(0, self.max_pad) + return pad(img, target, (pad_x, pad_y)) + + +class RandomSelect(object): + """ + Randomly selects between transforms1 and transforms2, + with probability p for transforms1 and (1 - p) for transforms2 + """ + + def __init__(self, transforms1, transforms2, p=0.5): + self.transforms1 = transforms1 + self.transforms2 = transforms2 + self.p = p + + def __call__(self, img, target): + if random.random() < self.p: + return self.transforms1(img, target) + return self.transforms2(img, target) + + +class ToTensor(object): + def __call__(self, img, target): + return F.to_tensor(img), target + + +class RandomErasing(object): + def __init__(self, *args, **kwargs): + self.eraser = T.RandomErasing(*args, **kwargs) + + def __call__(self, img, target): + return self.eraser(img), target + + +class Normalize(object): + def __init__(self, mean, std): + self.mean = mean + self.std = std + + def __call__(self, image, target=None): + image = F.normalize(image, mean=self.mean, std=self.std) + if target is None: + return image, None + target = target.copy() + h, w = image.shape[-2:] + if "boxes" in target: + boxes = target["boxes"] + boxes = box_xyxy_to_cxcywh(boxes) + boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) + target["boxes"] = boxes + return image, target + + +class Compose(object): + def __init__(self, transforms): + self.transforms = transforms + + def __call__(self, image, target): + for t in self.transforms: + image, target = t(image, target) + return image, target + + def __repr__(self): + format_string = self.__class__.__name__ + "(" + for t in self.transforms: + format_string += "\n" + format_string += " {0}".format(t) + format_string += "\n)" + return format_string diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/__init__.py b/GroundingDINO/groundingdino/models/GroundingDINO/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2af819d61d589cfec2e0ca46612a7456f42b831a --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/__init__.py @@ -0,0 +1,15 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Conditional DETR +# Copyright (c) 2021 Microsoft. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Copied from DETR (https://github.com/facebookresearch/detr) +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. +# ------------------------------------------------------------------------ + +from .groundingdino import build_groundingdino diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/backbone/__init__.py b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..76e4b272b479a26c63d120c818c140870cd8c287 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/__init__.py @@ -0,0 +1 @@ +from .backbone import build_backbone diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/backbone/backbone.py b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/backbone.py new file mode 100644 index 0000000000000000000000000000000000000000..c8340c723fad8e07e2fc62daaa3912487498814b --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/backbone.py @@ -0,0 +1,221 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Conditional DETR +# Copyright (c) 2021 Microsoft. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Copied from DETR (https://github.com/facebookresearch/detr) +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. +# ------------------------------------------------------------------------ + +""" +Backbone modules. +""" + +from typing import Dict, List + +import torch +import torch.nn.functional as F +import torchvision +from torch import nn +from torchvision.models._utils import IntermediateLayerGetter + +from groundingdino.util.misc import NestedTensor, clean_state_dict, is_main_process + +from .position_encoding import build_position_encoding +from .swin_transformer import build_swin_transformer + + +class FrozenBatchNorm2d(torch.nn.Module): + """ + BatchNorm2d where the batch statistics and the affine parameters are fixed. + + Copy-paste from torchvision.misc.ops with added eps before rqsrt, + without which any other models than torchvision.models.resnet[18,34,50,101] + produce nans. + """ + + def __init__(self, n): + super(FrozenBatchNorm2d, self).__init__() + self.register_buffer("weight", torch.ones(n)) + self.register_buffer("bias", torch.zeros(n)) + self.register_buffer("running_mean", torch.zeros(n)) + self.register_buffer("running_var", torch.ones(n)) + + def _load_from_state_dict( + self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ): + num_batches_tracked_key = prefix + "num_batches_tracked" + if num_batches_tracked_key in state_dict: + del state_dict[num_batches_tracked_key] + + super(FrozenBatchNorm2d, self)._load_from_state_dict( + state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ) + + def forward(self, x): + # move reshapes to the beginning + # to make it fuser-friendly + w = self.weight.reshape(1, -1, 1, 1) + b = self.bias.reshape(1, -1, 1, 1) + rv = self.running_var.reshape(1, -1, 1, 1) + rm = self.running_mean.reshape(1, -1, 1, 1) + eps = 1e-5 + scale = w * (rv + eps).rsqrt() + bias = b - rm * scale + return x * scale + bias + + +class BackboneBase(nn.Module): + def __init__( + self, + backbone: nn.Module, + train_backbone: bool, + num_channels: int, + return_interm_indices: list, + ): + super().__init__() + for name, parameter in backbone.named_parameters(): + if ( + not train_backbone + or "layer2" not in name + and "layer3" not in name + and "layer4" not in name + ): + parameter.requires_grad_(False) + + return_layers = {} + for idx, layer_index in enumerate(return_interm_indices): + return_layers.update( + {"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)} + ) + + # if len: + # if use_stage1_feature: + # return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} + # else: + # return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"} + # else: + # return_layers = {'layer4': "0"} + self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) + self.num_channels = num_channels + + def forward(self, tensor_list: NestedTensor): + xs = self.body(tensor_list.tensors) + out: Dict[str, NestedTensor] = {} + for name, x in xs.items(): + m = tensor_list.mask + assert m is not None + mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] + out[name] = NestedTensor(x, mask) + # import ipdb; ipdb.set_trace() + return out + + +class Backbone(BackboneBase): + """ResNet backbone with frozen BatchNorm.""" + + def __init__( + self, + name: str, + train_backbone: bool, + dilation: bool, + return_interm_indices: list, + batch_norm=FrozenBatchNorm2d, + ): + if name in ["resnet18", "resnet34", "resnet50", "resnet101"]: + backbone = getattr(torchvision.models, name)( + replace_stride_with_dilation=[False, False, dilation], + pretrained=is_main_process(), + norm_layer=batch_norm, + ) + else: + raise NotImplementedError("Why you can get here with name {}".format(name)) + # num_channels = 512 if name in ('resnet18', 'resnet34') else 2048 + assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available." + assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] + num_channels_all = [256, 512, 1024, 2048] + num_channels = num_channels_all[4 - len(return_interm_indices) :] + super().__init__(backbone, train_backbone, num_channels, return_interm_indices) + + +class Joiner(nn.Sequential): + def __init__(self, backbone, position_embedding): + super().__init__(backbone, position_embedding) + + def forward(self, tensor_list: NestedTensor): + xs = self[0](tensor_list) + out: List[NestedTensor] = [] + pos = [] + for name, x in xs.items(): + out.append(x) + # position encoding + pos.append(self[1](x).to(x.tensors.dtype)) + + return out, pos + + +def build_backbone(args): + """ + Useful args: + - backbone: backbone name + - lr_backbone: + - dilation + - return_interm_indices: available: [0,1,2,3], [1,2,3], [3] + - backbone_freeze_keywords: + - use_checkpoint: for swin only for now + + """ + position_embedding = build_position_encoding(args) + train_backbone = True + if not train_backbone: + raise ValueError("Please set lr_backbone > 0") + return_interm_indices = args.return_interm_indices + assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] + args.backbone_freeze_keywords + use_checkpoint = getattr(args, "use_checkpoint", False) + + if args.backbone in ["resnet50", "resnet101"]: + backbone = Backbone( + args.backbone, + train_backbone, + args.dilation, + return_interm_indices, + batch_norm=FrozenBatchNorm2d, + ) + bb_num_channels = backbone.num_channels + elif args.backbone in [ + "swin_T_224_1k", + "swin_B_224_22k", + "swin_B_384_22k", + "swin_L_224_22k", + "swin_L_384_22k", + ]: + pretrain_img_size = int(args.backbone.split("_")[-2]) + backbone = build_swin_transformer( + args.backbone, + pretrain_img_size=pretrain_img_size, + out_indices=tuple(return_interm_indices), + dilation=False, + use_checkpoint=use_checkpoint, + ) + + bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :] + else: + raise NotImplementedError("Unknown backbone {}".format(args.backbone)) + + assert len(bb_num_channels) == len( + return_interm_indices + ), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}" + + model = Joiner(backbone, position_embedding) + model.num_channels = bb_num_channels + assert isinstance( + bb_num_channels, List + ), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels)) + # import ipdb; ipdb.set_trace() + return model diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/backbone/position_encoding.py b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/position_encoding.py new file mode 100644 index 0000000000000000000000000000000000000000..eac7e896bbe85a670824bfe8ef487d0535d5bd99 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/position_encoding.py @@ -0,0 +1,186 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# DINO +# Copyright (c) 2022 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Conditional DETR +# Copyright (c) 2021 Microsoft. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Copied from DETR (https://github.com/facebookresearch/detr) +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. +# ------------------------------------------------------------------------ + +""" +Various positional encodings for the transformer. +""" +import math + +import torch +from torch import nn + +from groundingdino.util.misc import NestedTensor + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): + super().__init__() + self.num_pos_feats = num_pos_feats + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, tensor_list: NestedTensor): + x = tensor_list.tensors + mask = tensor_list.mask + assert mask is not None + not_mask = ~mask + y_embed = not_mask.cumsum(1, dtype=torch.float32) + x_embed = not_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + eps = 1e-6 + # if os.environ.get("SHILONG_AMP", None) == '1': + # eps = 1e-4 + # else: + # eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + +class PositionEmbeddingSineHW(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__( + self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None + ): + super().__init__() + self.num_pos_feats = num_pos_feats + self.temperatureH = temperatureH + self.temperatureW = temperatureW + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, tensor_list: NestedTensor): + x = tensor_list.tensors + mask = tensor_list.mask + assert mask is not None + not_mask = ~mask + y_embed = not_mask.cumsum(1, dtype=torch.float32) + x_embed = not_mask.cumsum(2, dtype=torch.float32) + + # import ipdb; ipdb.set_trace() + + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_tx = self.temperatureW ** (2 * (torch.div(dim_tx, 2, rounding_mode='floor')) / self.num_pos_feats) + pos_x = x_embed[:, :, :, None] / dim_tx + + dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_ty = self.temperatureH ** (2 * (torch.div(dim_ty, 2, rounding_mode='floor')) / self.num_pos_feats) + pos_y = y_embed[:, :, :, None] / dim_ty + + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + + # import ipdb; ipdb.set_trace() + + return pos + + +class PositionEmbeddingLearned(nn.Module): + """ + Absolute pos embedding, learned. + """ + + def __init__(self, num_pos_feats=256): + super().__init__() + self.row_embed = nn.Embedding(50, num_pos_feats) + self.col_embed = nn.Embedding(50, num_pos_feats) + self.reset_parameters() + + def reset_parameters(self): + nn.init.uniform_(self.row_embed.weight) + nn.init.uniform_(self.col_embed.weight) + + def forward(self, tensor_list: NestedTensor): + x = tensor_list.tensors + h, w = x.shape[-2:] + i = torch.arange(w, device=x.device) + j = torch.arange(h, device=x.device) + x_emb = self.col_embed(i) + y_emb = self.row_embed(j) + pos = ( + torch.cat( + [ + x_emb.unsqueeze(0).repeat(h, 1, 1), + y_emb.unsqueeze(1).repeat(1, w, 1), + ], + dim=-1, + ) + .permute(2, 0, 1) + .unsqueeze(0) + .repeat(x.shape[0], 1, 1, 1) + ) + return pos + + +def build_position_encoding(args): + N_steps = args.hidden_dim // 2 + if args.position_embedding in ("v2", "sine"): + # TODO find a better way of exposing other arguments + position_embedding = PositionEmbeddingSineHW( + N_steps, + temperatureH=args.pe_temperatureH, + temperatureW=args.pe_temperatureW, + normalize=True, + ) + elif args.position_embedding in ("v3", "learned"): + position_embedding = PositionEmbeddingLearned(N_steps) + else: + raise ValueError(f"not supported {args.position_embedding}") + + return position_embedding diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/backbone/swin_transformer.py b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/swin_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..1c66194deb5dd370e797e57e2712f44303e568cc --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/backbone/swin_transformer.py @@ -0,0 +1,802 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# DINO +# Copyright (c) 2022 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# -------------------------------------------------------- +# modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py +# -------------------------------------------------------- + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, to_2tuple, trunc_normal_ + +from groundingdino.util.misc import NestedTensor + + +class Mlp(nn.Module): + """Multilayer perceptron.""" + + def __init__( + self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0 + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + """Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__( + self, + dim, + window_size, + num_heads, + qkv_bias=True, + qk_scale=None, + attn_drop=0.0, + proj_drop=0.0, + ): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) + ) # 2*Wh-1 * 2*Ww-1, nH + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=0.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """Forward function. + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = ( + self.qkv(x) + .reshape(B_, N, 3, self.num_heads, C // self.num_heads) + .permute(2, 0, 3, 1, 4) + ) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = q @ k.transpose(-2, -1) + + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1) + ].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 + ) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class SwinTransformerBlock(nn.Module): + """Swin Transformer Block. + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__( + self, + dim, + num_heads, + window_size=7, + shift_size=0, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.dim = dim + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, + window_size=to_2tuple(self.window_size), + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + ) + + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop + ) + + self.H = None + self.W = None + + def forward(self, x, mask_matrix): + """Forward function. + Args: + x: Input feature, tensor size (B, H*W, C). + H, W: Spatial resolution of the input feature. + mask_matrix: Attention mask for cyclic shift. + """ + B, L, C = x.shape + H, W = self.H, self.W + assert L == H * W, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(B, H, W, C) + + # pad feature maps to multiples of window size + pad_l = pad_t = 0 + pad_r = (self.window_size - W % self.window_size) % self.window_size + pad_b = (self.window_size - H % self.window_size) % self.window_size + x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) + _, Hp, Wp, _ = x.shape + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + attn_mask = mask_matrix + else: + shifted_x = x + attn_mask = None + + # partition windows + x_windows = window_partition( + shifted_x, self.window_size + ) # nW*B, window_size, window_size, C + x_windows = x_windows.view( + -1, self.window_size * self.window_size, C + ) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA + attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + x = shifted_x + + if pad_r > 0 or pad_b > 0: + x = x[:, :H, :W, :].contiguous() + + x = x.view(B, H * W, C) + + # FFN + x = shortcut + self.drop_path(x) + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x + + +class PatchMerging(nn.Module): + """Patch Merging Layer + Args: + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x, H, W): + """Forward function. + Args: + x: Input feature, tensor size (B, H*W, C). + H, W: Spatial resolution of the input feature. + """ + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + + x = x.view(B, H, W, C) + + # padding + pad_input = (H % 2 == 1) or (W % 2 == 1) + if pad_input: + x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.norm(x) + x = self.reduction(x) + + return x + + +class BasicLayer(nn.Module): + """A basic Swin Transformer layer for one stage. + Args: + dim (int): Number of feature channels + depth (int): Depths of this stage. + num_heads (int): Number of attention head. + window_size (int): Local window size. Default: 7. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__( + self, + dim, + depth, + num_heads, + window_size=7, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + ): + super().__init__() + self.window_size = window_size + self.shift_size = window_size // 2 + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList( + [ + SwinTransformerBlock( + dim=dim, + num_heads=num_heads, + window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer, + ) + for i in range(depth) + ] + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(dim=dim, norm_layer=norm_layer) + else: + self.downsample = None + + def forward(self, x, H, W): + """Forward function. + Args: + x: Input feature, tensor size (B, H*W, C). + H, W: Spatial resolution of the input feature. + """ + + # calculate attention mask for SW-MSA + Hp = int(np.ceil(H / self.window_size)) * self.window_size + Wp = int(np.ceil(W / self.window_size)) * self.window_size + img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 + h_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + w_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition( + img_mask, self.window_size + ) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( + attn_mask == 0, float(0.0) + ) + + for blk in self.blocks: + blk.H, blk.W = H, W + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x, attn_mask) + else: + x = blk(x, attn_mask) + if self.downsample is not None: + x_down = self.downsample(x, H, W) + Wh, Ww = (H + 1) // 2, (W + 1) // 2 + return x, H, W, x_down, Wh, Ww + else: + return x, H, W, x, H, W + + +class PatchEmbed(nn.Module): + """Image to Patch Embedding + Args: + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + patch_size = to_2tuple(patch_size) + self.patch_size = patch_size + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + """Forward function.""" + # padding + _, _, H, W = x.size() + if W % self.patch_size[1] != 0: + x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) + if H % self.patch_size[0] != 0: + x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) + + x = self.proj(x) # B C Wh Ww + if self.norm is not None: + Wh, Ww = x.size(2), x.size(3) + x = x.flatten(2).transpose(1, 2) + x = self.norm(x) + x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) + + return x + + +class SwinTransformer(nn.Module): + """Swin Transformer backbone. + A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - + https://arxiv.org/pdf/2103.14030 + Args: + pretrain_img_size (int): Input image size for training the pretrained model, + used in absolute postion embedding. Default 224. + patch_size (int | tuple(int)): Patch size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + depths (tuple[int]): Depths of each Swin Transformer stage. + num_heads (tuple[int]): Number of attention head of each stage. + window_size (int): Window size. Default: 7. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. + drop_rate (float): Dropout rate. + attn_drop_rate (float): Attention dropout rate. Default: 0. + drop_path_rate (float): Stochastic depth rate. Default: 0.2. + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. + patch_norm (bool): If True, add normalization after patch embedding. Default: True. + out_indices (Sequence[int]): Output from which stages. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + -1 means not freezing any parameters. + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + dilation (bool): if True, the output size if 16x downsample, ow 32x downsample. + """ + + def __init__( + self, + pretrain_img_size=224, + patch_size=4, + in_chans=3, + embed_dim=96, + depths=[2, 2, 6, 2], + num_heads=[3, 6, 12, 24], + window_size=7, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop_rate=0.0, + attn_drop_rate=0.0, + drop_path_rate=0.2, + norm_layer=nn.LayerNorm, + ape=False, + patch_norm=True, + out_indices=(0, 1, 2, 3), + frozen_stages=-1, + dilation=False, + use_checkpoint=False, + ): + super().__init__() + + self.pretrain_img_size = pretrain_img_size + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.out_indices = out_indices + self.frozen_stages = frozen_stages + self.dilation = dilation + + # if use_checkpoint: + # print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!") + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None, + ) + + # absolute position embedding + if self.ape: + pretrain_img_size = to_2tuple(pretrain_img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [ + pretrain_img_size[0] // patch_size[0], + pretrain_img_size[1] // patch_size[1], + ] + + self.absolute_pos_embed = nn.Parameter( + torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]) + ) + trunc_normal_(self.absolute_pos_embed, std=0.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) + ] # stochastic depth decay rule + + # build layers + self.layers = nn.ModuleList() + # prepare downsample list + downsamplelist = [PatchMerging for i in range(self.num_layers)] + downsamplelist[-1] = None + num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)] + if self.dilation: + downsamplelist[-2] = None + num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2 + for i_layer in range(self.num_layers): + layer = BasicLayer( + # dim=int(embed_dim * 2 ** i_layer), + dim=num_features[i_layer], + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], + norm_layer=norm_layer, + # downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, + downsample=downsamplelist[i_layer], + use_checkpoint=use_checkpoint, + ) + self.layers.append(layer) + + # num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] + self.num_features = num_features + + # add a norm layer for each output + for i_layer in out_indices: + layer = norm_layer(num_features[i_layer]) + layer_name = f"norm{i_layer}" + self.add_module(layer_name, layer) + + self._freeze_stages() + + def _freeze_stages(self): + if self.frozen_stages >= 0: + self.patch_embed.eval() + for param in self.patch_embed.parameters(): + param.requires_grad = False + + if self.frozen_stages >= 1 and self.ape: + self.absolute_pos_embed.requires_grad = False + + if self.frozen_stages >= 2: + self.pos_drop.eval() + for i in range(0, self.frozen_stages - 1): + m = self.layers[i] + m.eval() + for param in m.parameters(): + param.requires_grad = False + + # def init_weights(self, pretrained=None): + # """Initialize the weights in backbone. + # Args: + # pretrained (str, optional): Path to pre-trained weights. + # Defaults to None. + # """ + + # def _init_weights(m): + # if isinstance(m, nn.Linear): + # trunc_normal_(m.weight, std=.02) + # if isinstance(m, nn.Linear) and m.bias is not None: + # nn.init.constant_(m.bias, 0) + # elif isinstance(m, nn.LayerNorm): + # nn.init.constant_(m.bias, 0) + # nn.init.constant_(m.weight, 1.0) + + # if isinstance(pretrained, str): + # self.apply(_init_weights) + # logger = get_root_logger() + # load_checkpoint(self, pretrained, strict=False, logger=logger) + # elif pretrained is None: + # self.apply(_init_weights) + # else: + # raise TypeError('pretrained must be a str or None') + + def forward_raw(self, x): + """Forward function.""" + x = self.patch_embed(x) + + Wh, Ww = x.size(2), x.size(3) + if self.ape: + # interpolate the position embedding to the corresponding size + absolute_pos_embed = F.interpolate( + self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic" + ) + x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C + else: + x = x.flatten(2).transpose(1, 2) + x = self.pos_drop(x) + + outs = [] + for i in range(self.num_layers): + layer = self.layers[i] + x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) + # import ipdb; ipdb.set_trace() + + if i in self.out_indices: + norm_layer = getattr(self, f"norm{i}") + x_out = norm_layer(x_out) + + out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() + outs.append(out) + # in: + # torch.Size([2, 3, 1024, 1024]) + # outs: + # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \ + # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])] + return tuple(outs) + + def forward(self, tensor_list: NestedTensor): + x = tensor_list.tensors + + """Forward function.""" + x = self.patch_embed(x) + + Wh, Ww = x.size(2), x.size(3) + if self.ape: + # interpolate the position embedding to the corresponding size + absolute_pos_embed = F.interpolate( + self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic" + ) + x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C + else: + x = x.flatten(2).transpose(1, 2) + x = self.pos_drop(x) + + outs = [] + for i in range(self.num_layers): + layer = self.layers[i] + x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) + + if i in self.out_indices: + norm_layer = getattr(self, f"norm{i}") + x_out = norm_layer(x_out) + + out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() + outs.append(out) + # in: + # torch.Size([2, 3, 1024, 1024]) + # out: + # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \ + # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])] + + # collect for nesttensors + outs_dict = {} + for idx, out_i in enumerate(outs): + m = tensor_list.mask + assert m is not None + mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0] + outs_dict[idx] = NestedTensor(out_i, mask) + + return outs_dict + + def train(self, mode=True): + """Convert the model into training mode while keep layers freezed.""" + super(SwinTransformer, self).train(mode) + self._freeze_stages() + + +def build_swin_transformer(modelname, pretrain_img_size, **kw): + assert modelname in [ + "swin_T_224_1k", + "swin_B_224_22k", + "swin_B_384_22k", + "swin_L_224_22k", + "swin_L_384_22k", + ] + + model_para_dict = { + "swin_T_224_1k": dict( + embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7 + ), + "swin_B_224_22k": dict( + embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7 + ), + "swin_B_384_22k": dict( + embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12 + ), + "swin_L_224_22k": dict( + embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7 + ), + "swin_L_384_22k": dict( + embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12 + ), + } + kw_cgf = model_para_dict[modelname] + kw_cgf.update(kw) + model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf) + return model + + +if __name__ == "__main__": + model = build_swin_transformer("swin_L_384_22k", 384, dilation=True) + x = torch.rand(2, 3, 1024, 1024) + y = model.forward_raw(x) + import ipdb + + ipdb.set_trace() + x = torch.rand(2, 3, 384, 384) + y = model.forward_raw(x) diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/bertwarper.py b/GroundingDINO/groundingdino/models/GroundingDINO/bertwarper.py new file mode 100644 index 0000000000000000000000000000000000000000..f0cf9779b270e1aead32845006f8b881fcba37ad --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/bertwarper.py @@ -0,0 +1,273 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from torch import Tensor, nn +from torchvision.ops.boxes import nms +from transformers import BertConfig, BertModel, BertPreTrainedModel +from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions + + +class BertModelWarper(nn.Module): + def __init__(self, bert_model): + super().__init__() + # self.bert = bert_modelc + + self.config = bert_model.config + self.embeddings = bert_model.embeddings + self.encoder = bert_model.encoder + self.pooler = bert_model.pooler + + self.get_extended_attention_mask = bert_model.get_extended_attention_mask + self.invert_attention_mask = bert_model.invert_attention_mask + self.get_head_mask = bert_model.get_head_mask + + def forward( + self, + input_ids=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` + (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` + instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. + use_cache (:obj:`bool`, `optional`): + If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up + decoding (see :obj:`past_key_values`). + """ + output_attentions = ( + output_attentions if output_attentions is not None else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + batch_size, seq_length = input_shape + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size, seq_length = input_shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = ( + past_key_values[0][0].shape[2] if past_key_values is not None else 0 + ) + + if attention_mask is None: + attention_mask = torch.ones( + ((batch_size, seq_length + past_key_values_length)), device=device + ) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( + attention_mask, input_shape, device + ) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': + # import ipdb; ipdb.set_trace() + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +class TextEncoderShell(nn.Module): + def __init__(self, text_encoder): + super().__init__() + self.text_encoder = text_encoder + self.config = self.text_encoder.config + + def forward(self, **kw): + # feed into text encoder + return self.text_encoder(**kw) + + +def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer): + """Generate attention mask between each pair of special tokens + Args: + input_ids (torch.Tensor): input ids. Shape: [bs, num_token] + special_tokens_mask (list): special tokens mask. + Returns: + torch.Tensor: attention mask between each special tokens. + """ + input_ids = tokenized["input_ids"] + bs, num_token = input_ids.shape + # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens + special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool() + for special_token in special_tokens_list: + special_tokens_mask |= input_ids == special_token + + # idxs: each row is a list of indices of special tokens + idxs = torch.nonzero(special_tokens_mask) + + # generate attention mask and positional ids + attention_mask = ( + torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1) + ) + position_ids = torch.zeros((bs, num_token), device=input_ids.device) + previous_col = 0 + for i in range(idxs.shape[0]): + row, col = idxs[i] + if (col == 0) or (col == num_token - 1): + attention_mask[row, col, col] = True + position_ids[row, col] = 0 + else: + attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True + position_ids[row, previous_col + 1 : col + 1] = torch.arange( + 0, col - previous_col, device=input_ids.device + ) + + previous_col = col + + # # padding mask + # padding_mask = tokenized['attention_mask'] + # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool() + + return attention_mask, position_ids.to(torch.long) + + +def generate_masks_with_special_tokens_and_transfer_map(tokenized, special_tokens_list, tokenizer): + """Generate attention mask between each pair of special tokens + Args: + input_ids (torch.Tensor): input ids. Shape: [bs, num_token] + special_tokens_mask (list): special tokens mask. + Returns: + torch.Tensor: attention mask between each special tokens. + """ + input_ids = tokenized["input_ids"] + bs, num_token = input_ids.shape + # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens + special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool() + for special_token in special_tokens_list: + special_tokens_mask |= input_ids == special_token + + # idxs: each row is a list of indices of special tokens + idxs = torch.nonzero(special_tokens_mask) + + # generate attention mask and positional ids + attention_mask = ( + torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1) + ) + position_ids = torch.zeros((bs, num_token), device=input_ids.device) + cate_to_token_mask_list = [[] for _ in range(bs)] + previous_col = 0 + for i in range(idxs.shape[0]): + row, col = idxs[i] + if (col == 0) or (col == num_token - 1): + attention_mask[row, col, col] = True + position_ids[row, col] = 0 + else: + attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True + position_ids[row, previous_col + 1 : col + 1] = torch.arange( + 0, col - previous_col, device=input_ids.device + ) + c2t_maski = torch.zeros((num_token), device=input_ids.device).bool() + c2t_maski[previous_col + 1 : col] = True + cate_to_token_mask_list[row].append(c2t_maski) + previous_col = col + + cate_to_token_mask_list = [ + torch.stack(cate_to_token_mask_listi, dim=0) + for cate_to_token_mask_listi in cate_to_token_mask_list + ] + + # # padding mask + # padding_mask = tokenized['attention_mask'] + # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool() + + return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn.h b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn.h new file mode 100644 index 0000000000000000000000000000000000000000..c7408eba007b424194618baa63726657e36875e3 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn.h @@ -0,0 +1,64 @@ +/*! +************************************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************************************** +* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 +************************************************************************************************** +*/ + +#pragma once + +#include "ms_deform_attn_cpu.h" + +#ifdef WITH_CUDA +#include "ms_deform_attn_cuda.h" +#endif + +namespace groundingdino { + +at::Tensor +ms_deform_attn_forward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const int im2col_step) +{ + if (value.type().is_cuda()) + { +#ifdef WITH_CUDA + return ms_deform_attn_cuda_forward( + value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step); +#else + AT_ERROR("Not compiled with GPU support"); +#endif + } + AT_ERROR("Not implemented on the CPU"); +} + +std::vector +ms_deform_attn_backward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const at::Tensor &grad_output, + const int im2col_step) +{ + if (value.type().is_cuda()) + { +#ifdef WITH_CUDA + return ms_deform_attn_cuda_backward( + value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step); +#else + AT_ERROR("Not compiled with GPU support"); +#endif + } + AT_ERROR("Not implemented on the CPU"); +} + +} // namespace groundingdino \ No newline at end of file diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.cpp b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.cpp new file mode 100644 index 0000000000000000000000000000000000000000..551243fdadfd1682b5dc6628623b67a79b3f6c74 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.cpp @@ -0,0 +1,43 @@ +/*! +************************************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************************************** +* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 +************************************************************************************************** +*/ + +#include + +#include +#include + +namespace groundingdino { + +at::Tensor +ms_deform_attn_cpu_forward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const int im2col_step) +{ + AT_ERROR("Not implement on cpu"); +} + +std::vector +ms_deform_attn_cpu_backward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const at::Tensor &grad_output, + const int im2col_step) +{ + AT_ERROR("Not implement on cpu"); +} + +} // namespace groundingdino diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.h b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.h new file mode 100644 index 0000000000000000000000000000000000000000..b2b88e8c46f19b6db0933163e57ccdb51180f517 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.h @@ -0,0 +1,35 @@ +/*! +************************************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************************************** +* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 +************************************************************************************************** +*/ + +#pragma once +#include + +namespace groundingdino { + +at::Tensor +ms_deform_attn_cpu_forward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const int im2col_step); + +std::vector +ms_deform_attn_cpu_backward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const at::Tensor &grad_output, + const int im2col_step); + +} // namespace groundingdino diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.cu b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.cu new file mode 100644 index 0000000000000000000000000000000000000000..d04fae8a9a45c11e4e74f3035e94762796da4096 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.cu @@ -0,0 +1,156 @@ +/*! +************************************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************************************** +* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 +************************************************************************************************** +*/ + +#include +#include "ms_deform_im2col_cuda.cuh" + +#include +#include +#include +#include + +namespace groundingdino { + +at::Tensor ms_deform_attn_cuda_forward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const int im2col_step) +{ + AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); + AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); + AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); + AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); + AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); + + AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); + AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); + AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); + AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); + AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); + + const int batch = value.size(0); + const int spatial_size = value.size(1); + const int num_heads = value.size(2); + const int channels = value.size(3); + + const int num_levels = spatial_shapes.size(0); + + const int num_query = sampling_loc.size(1); + const int num_point = sampling_loc.size(4); + + const int im2col_step_ = std::min(batch, im2col_step); + + AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); + + auto output = at::zeros({batch, num_query, num_heads, channels}, value.options()); + + const int batch_n = im2col_step_; + auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); + auto per_value_size = spatial_size * num_heads * channels; + auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; + auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; + for (int n = 0; n < batch/im2col_step_; ++n) + { + auto columns = output_n.select(0, n); + AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] { + ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(), + value.data() + n * im2col_step_ * per_value_size, + spatial_shapes.data(), + level_start_index.data(), + sampling_loc.data() + n * im2col_step_ * per_sample_loc_size, + attn_weight.data() + n * im2col_step_ * per_attn_weight_size, + batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, + columns.data()); + + })); + } + + output = output.view({batch, num_query, num_heads*channels}); + + return output; +} + + +std::vector ms_deform_attn_cuda_backward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const at::Tensor &grad_output, + const int im2col_step) +{ + + AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); + AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); + AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); + AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); + AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); + AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous"); + + AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); + AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); + AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); + AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); + AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); + AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor"); + + const int batch = value.size(0); + const int spatial_size = value.size(1); + const int num_heads = value.size(2); + const int channels = value.size(3); + + const int num_levels = spatial_shapes.size(0); + + const int num_query = sampling_loc.size(1); + const int num_point = sampling_loc.size(4); + + const int im2col_step_ = std::min(batch, im2col_step); + + AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); + + auto grad_value = at::zeros_like(value); + auto grad_sampling_loc = at::zeros_like(sampling_loc); + auto grad_attn_weight = at::zeros_like(attn_weight); + + const int batch_n = im2col_step_; + auto per_value_size = spatial_size * num_heads * channels; + auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; + auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; + auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); + + for (int n = 0; n < batch/im2col_step_; ++n) + { + auto grad_output_g = grad_output_n.select(0, n); + AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] { + ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(), + grad_output_g.data(), + value.data() + n * im2col_step_ * per_value_size, + spatial_shapes.data(), + level_start_index.data(), + sampling_loc.data() + n * im2col_step_ * per_sample_loc_size, + attn_weight.data() + n * im2col_step_ * per_attn_weight_size, + batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, + grad_value.data() + n * im2col_step_ * per_value_size, + grad_sampling_loc.data() + n * im2col_step_ * per_sample_loc_size, + grad_attn_weight.data() + n * im2col_step_ * per_attn_weight_size); + + })); + } + + return { + grad_value, grad_sampling_loc, grad_attn_weight + }; +} + +} // namespace groundingdino \ No newline at end of file diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.h b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.h new file mode 100644 index 0000000000000000000000000000000000000000..ad1311a78f61303616504eb991aaa9c4a93d9948 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.h @@ -0,0 +1,33 @@ +/*! +************************************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************************************** +* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 +************************************************************************************************** +*/ + +#pragma once +#include + +namespace groundingdino { + +at::Tensor ms_deform_attn_cuda_forward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const int im2col_step); + +std::vector ms_deform_attn_cuda_backward( + const at::Tensor &value, + const at::Tensor &spatial_shapes, + const at::Tensor &level_start_index, + const at::Tensor &sampling_loc, + const at::Tensor &attn_weight, + const at::Tensor &grad_output, + const int im2col_step); + +} // namespace groundingdino \ No newline at end of file diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_im2col_cuda.cuh b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_im2col_cuda.cuh new file mode 100644 index 0000000000000000000000000000000000000000..6bc2acb7aea0eab2e9e91e769a16861e1652c284 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_im2col_cuda.cuh @@ -0,0 +1,1327 @@ +/*! +************************************************************************** +* Deformable DETR +* Copyright (c) 2020 SenseTime. All Rights Reserved. +* Licensed under the Apache License, Version 2.0 [see LICENSE for details] +************************************************************************** +* Modified from DCN (https://github.com/msracver/Deformable-ConvNets) +* Copyright (c) 2018 Microsoft +************************************************************************** +*/ + +#include +#include +#include + +#include +#include + +#include + +#define CUDA_KERNEL_LOOP(i, n) \ + for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ + i < (n); \ + i += blockDim.x * gridDim.x) + +const int CUDA_NUM_THREADS = 1024; +inline int GET_BLOCKS(const int N, const int num_threads) +{ + return (N + num_threads - 1) / num_threads; +} + + +template +__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data, + const int &height, const int &width, const int &nheads, const int &channels, + const scalar_t &h, const scalar_t &w, const int &m, const int &c) +{ + const int h_low = floor(h); + const int w_low = floor(w); + const int h_high = h_low + 1; + const int w_high = w_low + 1; + + const scalar_t lh = h - h_low; + const scalar_t lw = w - w_low; + const scalar_t hh = 1 - lh, hw = 1 - lw; + + const int w_stride = nheads * channels; + const int h_stride = width * w_stride; + const int h_low_ptr_offset = h_low * h_stride; + const int h_high_ptr_offset = h_low_ptr_offset + h_stride; + const int w_low_ptr_offset = w_low * w_stride; + const int w_high_ptr_offset = w_low_ptr_offset + w_stride; + const int base_ptr = m * channels + c; + + scalar_t v1 = 0; + if (h_low >= 0 && w_low >= 0) + { + const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; + v1 = bottom_data[ptr1]; + } + scalar_t v2 = 0; + if (h_low >= 0 && w_high <= width - 1) + { + const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; + v2 = bottom_data[ptr2]; + } + scalar_t v3 = 0; + if (h_high <= height - 1 && w_low >= 0) + { + const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; + v3 = bottom_data[ptr3]; + } + scalar_t v4 = 0; + if (h_high <= height - 1 && w_high <= width - 1) + { + const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; + v4 = bottom_data[ptr4]; + } + + const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; + + const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); + return val; +} + + +template +__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data, + const int &height, const int &width, const int &nheads, const int &channels, + const scalar_t &h, const scalar_t &w, const int &m, const int &c, + const scalar_t &top_grad, + const scalar_t &attn_weight, + scalar_t* &grad_value, + scalar_t* grad_sampling_loc, + scalar_t* grad_attn_weight) +{ + const int h_low = floor(h); + const int w_low = floor(w); + const int h_high = h_low + 1; + const int w_high = w_low + 1; + + const scalar_t lh = h - h_low; + const scalar_t lw = w - w_low; + const scalar_t hh = 1 - lh, hw = 1 - lw; + + const int w_stride = nheads * channels; + const int h_stride = width * w_stride; + const int h_low_ptr_offset = h_low * h_stride; + const int h_high_ptr_offset = h_low_ptr_offset + h_stride; + const int w_low_ptr_offset = w_low * w_stride; + const int w_high_ptr_offset = w_low_ptr_offset + w_stride; + const int base_ptr = m * channels + c; + + const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; + const scalar_t top_grad_value = top_grad * attn_weight; + scalar_t grad_h_weight = 0, grad_w_weight = 0; + + scalar_t v1 = 0; + if (h_low >= 0 && w_low >= 0) + { + const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; + v1 = bottom_data[ptr1]; + grad_h_weight -= hw * v1; + grad_w_weight -= hh * v1; + atomicAdd(grad_value+ptr1, w1*top_grad_value); + } + scalar_t v2 = 0; + if (h_low >= 0 && w_high <= width - 1) + { + const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; + v2 = bottom_data[ptr2]; + grad_h_weight -= lw * v2; + grad_w_weight += hh * v2; + atomicAdd(grad_value+ptr2, w2*top_grad_value); + } + scalar_t v3 = 0; + if (h_high <= height - 1 && w_low >= 0) + { + const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; + v3 = bottom_data[ptr3]; + grad_h_weight += hw * v3; + grad_w_weight -= lh * v3; + atomicAdd(grad_value+ptr3, w3*top_grad_value); + } + scalar_t v4 = 0; + if (h_high <= height - 1 && w_high <= width - 1) + { + const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; + v4 = bottom_data[ptr4]; + grad_h_weight += lw * v4; + grad_w_weight += lh * v4; + atomicAdd(grad_value+ptr4, w4*top_grad_value); + } + + const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); + *grad_attn_weight = top_grad * val; + *grad_sampling_loc = width * grad_w_weight * top_grad_value; + *(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value; +} + + +template +__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data, + const int &height, const int &width, const int &nheads, const int &channels, + const scalar_t &h, const scalar_t &w, const int &m, const int &c, + const scalar_t &top_grad, + const scalar_t &attn_weight, + scalar_t* &grad_value, + scalar_t* grad_sampling_loc, + scalar_t* grad_attn_weight) +{ + const int h_low = floor(h); + const int w_low = floor(w); + const int h_high = h_low + 1; + const int w_high = w_low + 1; + + const scalar_t lh = h - h_low; + const scalar_t lw = w - w_low; + const scalar_t hh = 1 - lh, hw = 1 - lw; + + const int w_stride = nheads * channels; + const int h_stride = width * w_stride; + const int h_low_ptr_offset = h_low * h_stride; + const int h_high_ptr_offset = h_low_ptr_offset + h_stride; + const int w_low_ptr_offset = w_low * w_stride; + const int w_high_ptr_offset = w_low_ptr_offset + w_stride; + const int base_ptr = m * channels + c; + + const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; + const scalar_t top_grad_value = top_grad * attn_weight; + scalar_t grad_h_weight = 0, grad_w_weight = 0; + + scalar_t v1 = 0; + if (h_low >= 0 && w_low >= 0) + { + const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; + v1 = bottom_data[ptr1]; + grad_h_weight -= hw * v1; + grad_w_weight -= hh * v1; + atomicAdd(grad_value+ptr1, w1*top_grad_value); + } + scalar_t v2 = 0; + if (h_low >= 0 && w_high <= width - 1) + { + const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; + v2 = bottom_data[ptr2]; + grad_h_weight -= lw * v2; + grad_w_weight += hh * v2; + atomicAdd(grad_value+ptr2, w2*top_grad_value); + } + scalar_t v3 = 0; + if (h_high <= height - 1 && w_low >= 0) + { + const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; + v3 = bottom_data[ptr3]; + grad_h_weight += hw * v3; + grad_w_weight -= lh * v3; + atomicAdd(grad_value+ptr3, w3*top_grad_value); + } + scalar_t v4 = 0; + if (h_high <= height - 1 && w_high <= width - 1) + { + const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; + v4 = bottom_data[ptr4]; + grad_h_weight += lw * v4; + grad_w_weight += lh * v4; + atomicAdd(grad_value+ptr4, w4*top_grad_value); + } + + const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); + atomicAdd(grad_attn_weight, top_grad * val); + atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value); + atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value); +} + + +template +__global__ void ms_deformable_im2col_gpu_kernel(const int n, + const scalar_t *data_value, + const int64_t *data_spatial_shapes, + const int64_t *data_level_start_index, + const scalar_t *data_sampling_loc, + const scalar_t *data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t *data_col) +{ + CUDA_KERNEL_LOOP(index, n) + { + int _temp = index; + const int c_col = _temp % channels; + _temp /= channels; + const int sampling_index = _temp; + const int m_col = _temp % num_heads; + _temp /= num_heads; + const int q_col = _temp % num_query; + _temp /= num_query; + const int b_col = _temp; + + scalar_t *data_col_ptr = data_col + index; + int data_weight_ptr = sampling_index * num_levels * num_point; + int data_loc_w_ptr = data_weight_ptr << 1; + const int qid_stride = num_heads * channels; + const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; + scalar_t col = 0; + + for (int l_col=0; l_col < num_levels; ++l_col) + { + const int level_start_id = data_level_start_index[l_col]; + const int spatial_h_ptr = l_col << 1; + const int spatial_h = data_spatial_shapes[spatial_h_ptr]; + const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; + const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride); + for (int p_col=0; p_col < num_point; ++p_col) + { + const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; + const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; + const scalar_t weight = data_attn_weight[data_weight_ptr]; + + const scalar_t h_im = loc_h * spatial_h - 0.5; + const scalar_t w_im = loc_w * spatial_w - 0.5; + + if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) + { + col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight; + } + + data_weight_ptr += 1; + data_loc_w_ptr += 2; + } + } + *data_col_ptr = col; + } +} + +template +__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n, + const scalar_t *grad_col, + const scalar_t *data_value, + const int64_t *data_spatial_shapes, + const int64_t *data_level_start_index, + const scalar_t *data_sampling_loc, + const scalar_t *data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t *grad_value, + scalar_t *grad_sampling_loc, + scalar_t *grad_attn_weight) +{ + CUDA_KERNEL_LOOP(index, n) + { + __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; + __shared__ scalar_t cache_grad_attn_weight[blockSize]; + unsigned int tid = threadIdx.x; + int _temp = index; + const int c_col = _temp % channels; + _temp /= channels; + const int sampling_index = _temp; + const int m_col = _temp % num_heads; + _temp /= num_heads; + const int q_col = _temp % num_query; + _temp /= num_query; + const int b_col = _temp; + + const scalar_t top_grad = grad_col[index]; + + int data_weight_ptr = sampling_index * num_levels * num_point; + int data_loc_w_ptr = data_weight_ptr << 1; + const int grad_sampling_ptr = data_weight_ptr; + grad_sampling_loc += grad_sampling_ptr << 1; + grad_attn_weight += grad_sampling_ptr; + const int grad_weight_stride = 1; + const int grad_loc_stride = 2; + const int qid_stride = num_heads * channels; + const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; + + for (int l_col=0; l_col < num_levels; ++l_col) + { + const int level_start_id = data_level_start_index[l_col]; + const int spatial_h_ptr = l_col << 1; + const int spatial_h = data_spatial_shapes[spatial_h_ptr]; + const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; + const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; + const scalar_t *data_value_ptr = data_value + value_ptr_offset; + scalar_t *grad_value_ptr = grad_value + value_ptr_offset; + + for (int p_col=0; p_col < num_point; ++p_col) + { + const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; + const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; + const scalar_t weight = data_attn_weight[data_weight_ptr]; + + const scalar_t h_im = loc_h * spatial_h - 0.5; + const scalar_t w_im = loc_w * spatial_w - 0.5; + *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; + *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; + *(cache_grad_attn_weight+threadIdx.x)=0; + if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) + { + ms_deform_attn_col2im_bilinear( + data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, + top_grad, weight, grad_value_ptr, + cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); + } + + __syncthreads(); + if (tid == 0) + { + scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; + int sid=2; + for (unsigned int tid = 1; tid < blockSize; ++tid) + { + _grad_w += cache_grad_sampling_loc[sid]; + _grad_h += cache_grad_sampling_loc[sid + 1]; + _grad_a += cache_grad_attn_weight[tid]; + sid += 2; + } + + + *grad_sampling_loc = _grad_w; + *(grad_sampling_loc + 1) = _grad_h; + *grad_attn_weight = _grad_a; + } + __syncthreads(); + + data_weight_ptr += 1; + data_loc_w_ptr += 2; + grad_attn_weight += grad_weight_stride; + grad_sampling_loc += grad_loc_stride; + } + } + } +} + + +template +__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n, + const scalar_t *grad_col, + const scalar_t *data_value, + const int64_t *data_spatial_shapes, + const int64_t *data_level_start_index, + const scalar_t *data_sampling_loc, + const scalar_t *data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t *grad_value, + scalar_t *grad_sampling_loc, + scalar_t *grad_attn_weight) +{ + CUDA_KERNEL_LOOP(index, n) + { + __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; + __shared__ scalar_t cache_grad_attn_weight[blockSize]; + unsigned int tid = threadIdx.x; + int _temp = index; + const int c_col = _temp % channels; + _temp /= channels; + const int sampling_index = _temp; + const int m_col = _temp % num_heads; + _temp /= num_heads; + const int q_col = _temp % num_query; + _temp /= num_query; + const int b_col = _temp; + + const scalar_t top_grad = grad_col[index]; + + int data_weight_ptr = sampling_index * num_levels * num_point; + int data_loc_w_ptr = data_weight_ptr << 1; + const int grad_sampling_ptr = data_weight_ptr; + grad_sampling_loc += grad_sampling_ptr << 1; + grad_attn_weight += grad_sampling_ptr; + const int grad_weight_stride = 1; + const int grad_loc_stride = 2; + const int qid_stride = num_heads * channels; + const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; + + for (int l_col=0; l_col < num_levels; ++l_col) + { + const int level_start_id = data_level_start_index[l_col]; + const int spatial_h_ptr = l_col << 1; + const int spatial_h = data_spatial_shapes[spatial_h_ptr]; + const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; + const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; + const scalar_t *data_value_ptr = data_value + value_ptr_offset; + scalar_t *grad_value_ptr = grad_value + value_ptr_offset; + + for (int p_col=0; p_col < num_point; ++p_col) + { + const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; + const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; + const scalar_t weight = data_attn_weight[data_weight_ptr]; + + const scalar_t h_im = loc_h * spatial_h - 0.5; + const scalar_t w_im = loc_w * spatial_w - 0.5; + *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; + *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; + *(cache_grad_attn_weight+threadIdx.x)=0; + if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) + { + ms_deform_attn_col2im_bilinear( + data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, + top_grad, weight, grad_value_ptr, + cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); + } + + __syncthreads(); + + for (unsigned int s=blockSize/2; s>0; s>>=1) + { + if (tid < s) { + const unsigned int xid1 = tid << 1; + const unsigned int xid2 = (tid + s) << 1; + cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; + cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; + cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; + } + __syncthreads(); + } + + if (tid == 0) + { + *grad_sampling_loc = cache_grad_sampling_loc[0]; + *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; + *grad_attn_weight = cache_grad_attn_weight[0]; + } + __syncthreads(); + + data_weight_ptr += 1; + data_loc_w_ptr += 2; + grad_attn_weight += grad_weight_stride; + grad_sampling_loc += grad_loc_stride; + } + } + } +} + + +template +__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n, + const scalar_t *grad_col, + const scalar_t *data_value, + const int64_t *data_spatial_shapes, + const int64_t *data_level_start_index, + const scalar_t *data_sampling_loc, + const scalar_t *data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t *grad_value, + scalar_t *grad_sampling_loc, + scalar_t *grad_attn_weight) +{ + CUDA_KERNEL_LOOP(index, n) + { + extern __shared__ int _s[]; + scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; + scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; + unsigned int tid = threadIdx.x; + int _temp = index; + const int c_col = _temp % channels; + _temp /= channels; + const int sampling_index = _temp; + const int m_col = _temp % num_heads; + _temp /= num_heads; + const int q_col = _temp % num_query; + _temp /= num_query; + const int b_col = _temp; + + const scalar_t top_grad = grad_col[index]; + + int data_weight_ptr = sampling_index * num_levels * num_point; + int data_loc_w_ptr = data_weight_ptr << 1; + const int grad_sampling_ptr = data_weight_ptr; + grad_sampling_loc += grad_sampling_ptr << 1; + grad_attn_weight += grad_sampling_ptr; + const int grad_weight_stride = 1; + const int grad_loc_stride = 2; + const int qid_stride = num_heads * channels; + const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; + + for (int l_col=0; l_col < num_levels; ++l_col) + { + const int level_start_id = data_level_start_index[l_col]; + const int spatial_h_ptr = l_col << 1; + const int spatial_h = data_spatial_shapes[spatial_h_ptr]; + const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; + const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; + const scalar_t *data_value_ptr = data_value + value_ptr_offset; + scalar_t *grad_value_ptr = grad_value + value_ptr_offset; + + for (int p_col=0; p_col < num_point; ++p_col) + { + const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; + const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; + const scalar_t weight = data_attn_weight[data_weight_ptr]; + + const scalar_t h_im = loc_h * spatial_h - 0.5; + const scalar_t w_im = loc_w * spatial_w - 0.5; + *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; + *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; + *(cache_grad_attn_weight+threadIdx.x)=0; + if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) + { + ms_deform_attn_col2im_bilinear( + data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, + top_grad, weight, grad_value_ptr, + cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); + } + + __syncthreads(); + if (tid == 0) + { + scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; + int sid=2; + for (unsigned int tid = 1; tid < blockDim.x; ++tid) + { + _grad_w += cache_grad_sampling_loc[sid]; + _grad_h += cache_grad_sampling_loc[sid + 1]; + _grad_a += cache_grad_attn_weight[tid]; + sid += 2; + } + + + *grad_sampling_loc = _grad_w; + *(grad_sampling_loc + 1) = _grad_h; + *grad_attn_weight = _grad_a; + } + __syncthreads(); + + data_weight_ptr += 1; + data_loc_w_ptr += 2; + grad_attn_weight += grad_weight_stride; + grad_sampling_loc += grad_loc_stride; + } + } + } +} + +template +__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n, + const scalar_t *grad_col, + const scalar_t *data_value, + const int64_t *data_spatial_shapes, + const int64_t *data_level_start_index, + const scalar_t *data_sampling_loc, + const scalar_t *data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t *grad_value, + scalar_t *grad_sampling_loc, + scalar_t *grad_attn_weight) +{ + CUDA_KERNEL_LOOP(index, n) + { + extern __shared__ int _s[]; + scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; + scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; + unsigned int tid = threadIdx.x; + int _temp = index; + const int c_col = _temp % channels; + _temp /= channels; + const int sampling_index = _temp; + const int m_col = _temp % num_heads; + _temp /= num_heads; + const int q_col = _temp % num_query; + _temp /= num_query; + const int b_col = _temp; + + const scalar_t top_grad = grad_col[index]; + + int data_weight_ptr = sampling_index * num_levels * num_point; + int data_loc_w_ptr = data_weight_ptr << 1; + const int grad_sampling_ptr = data_weight_ptr; + grad_sampling_loc += grad_sampling_ptr << 1; + grad_attn_weight += grad_sampling_ptr; + const int grad_weight_stride = 1; + const int grad_loc_stride = 2; + const int qid_stride = num_heads * channels; + const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; + + for (int l_col=0; l_col < num_levels; ++l_col) + { + const int level_start_id = data_level_start_index[l_col]; + const int spatial_h_ptr = l_col << 1; + const int spatial_h = data_spatial_shapes[spatial_h_ptr]; + const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; + const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; + const scalar_t *data_value_ptr = data_value + value_ptr_offset; + scalar_t *grad_value_ptr = grad_value + value_ptr_offset; + + for (int p_col=0; p_col < num_point; ++p_col) + { + const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; + const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; + const scalar_t weight = data_attn_weight[data_weight_ptr]; + + const scalar_t h_im = loc_h * spatial_h - 0.5; + const scalar_t w_im = loc_w * spatial_w - 0.5; + *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; + *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; + *(cache_grad_attn_weight+threadIdx.x)=0; + if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) + { + ms_deform_attn_col2im_bilinear( + data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, + top_grad, weight, grad_value_ptr, + cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); + } + + __syncthreads(); + + for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) + { + if (tid < s) { + const unsigned int xid1 = tid << 1; + const unsigned int xid2 = (tid + s) << 1; + cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; + cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; + cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; + if (tid + (s << 1) < spre) + { + cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; + cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; + cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; + } + } + __syncthreads(); + } + + if (tid == 0) + { + *grad_sampling_loc = cache_grad_sampling_loc[0]; + *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; + *grad_attn_weight = cache_grad_attn_weight[0]; + } + __syncthreads(); + + data_weight_ptr += 1; + data_loc_w_ptr += 2; + grad_attn_weight += grad_weight_stride; + grad_sampling_loc += grad_loc_stride; + } + } + } +} + +template +__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n, + const scalar_t *grad_col, + const scalar_t *data_value, + const int64_t *data_spatial_shapes, + const int64_t *data_level_start_index, + const scalar_t *data_sampling_loc, + const scalar_t *data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t *grad_value, + scalar_t *grad_sampling_loc, + scalar_t *grad_attn_weight) +{ + CUDA_KERNEL_LOOP(index, n) + { + extern __shared__ int _s[]; + scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; + scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; + unsigned int tid = threadIdx.x; + int _temp = index; + const int c_col = _temp % channels; + _temp /= channels; + const int sampling_index = _temp; + const int m_col = _temp % num_heads; + _temp /= num_heads; + const int q_col = _temp % num_query; + _temp /= num_query; + const int b_col = _temp; + + const scalar_t top_grad = grad_col[index]; + + int data_weight_ptr = sampling_index * num_levels * num_point; + int data_loc_w_ptr = data_weight_ptr << 1; + const int grad_sampling_ptr = data_weight_ptr; + grad_sampling_loc += grad_sampling_ptr << 1; + grad_attn_weight += grad_sampling_ptr; + const int grad_weight_stride = 1; + const int grad_loc_stride = 2; + const int qid_stride = num_heads * channels; + const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; + + for (int l_col=0; l_col < num_levels; ++l_col) + { + const int level_start_id = data_level_start_index[l_col]; + const int spatial_h_ptr = l_col << 1; + const int spatial_h = data_spatial_shapes[spatial_h_ptr]; + const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; + const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; + const scalar_t *data_value_ptr = data_value + value_ptr_offset; + scalar_t *grad_value_ptr = grad_value + value_ptr_offset; + + for (int p_col=0; p_col < num_point; ++p_col) + { + const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; + const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; + const scalar_t weight = data_attn_weight[data_weight_ptr]; + + const scalar_t h_im = loc_h * spatial_h - 0.5; + const scalar_t w_im = loc_w * spatial_w - 0.5; + *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; + *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; + *(cache_grad_attn_weight+threadIdx.x)=0; + if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) + { + ms_deform_attn_col2im_bilinear( + data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, + top_grad, weight, grad_value_ptr, + cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); + } + + __syncthreads(); + + for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) + { + if (tid < s) { + const unsigned int xid1 = tid << 1; + const unsigned int xid2 = (tid + s) << 1; + cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; + cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; + cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; + if (tid + (s << 1) < spre) + { + cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; + cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; + cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; + } + } + __syncthreads(); + } + + if (tid == 0) + { + atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]); + atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]); + atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]); + } + __syncthreads(); + + data_weight_ptr += 1; + data_loc_w_ptr += 2; + grad_attn_weight += grad_weight_stride; + grad_sampling_loc += grad_loc_stride; + } + } + } +} + + +template +__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n, + const scalar_t *grad_col, + const scalar_t *data_value, + const int64_t *data_spatial_shapes, + const int64_t *data_level_start_index, + const scalar_t *data_sampling_loc, + const scalar_t *data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t *grad_value, + scalar_t *grad_sampling_loc, + scalar_t *grad_attn_weight) +{ + CUDA_KERNEL_LOOP(index, n) + { + int _temp = index; + const int c_col = _temp % channels; + _temp /= channels; + const int sampling_index = _temp; + const int m_col = _temp % num_heads; + _temp /= num_heads; + const int q_col = _temp % num_query; + _temp /= num_query; + const int b_col = _temp; + + const scalar_t top_grad = grad_col[index]; + + int data_weight_ptr = sampling_index * num_levels * num_point; + int data_loc_w_ptr = data_weight_ptr << 1; + const int grad_sampling_ptr = data_weight_ptr; + grad_sampling_loc += grad_sampling_ptr << 1; + grad_attn_weight += grad_sampling_ptr; + const int grad_weight_stride = 1; + const int grad_loc_stride = 2; + const int qid_stride = num_heads * channels; + const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; + + for (int l_col=0; l_col < num_levels; ++l_col) + { + const int level_start_id = data_level_start_index[l_col]; + const int spatial_h_ptr = l_col << 1; + const int spatial_h = data_spatial_shapes[spatial_h_ptr]; + const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; + const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; + const scalar_t *data_value_ptr = data_value + value_ptr_offset; + scalar_t *grad_value_ptr = grad_value + value_ptr_offset; + + for (int p_col=0; p_col < num_point; ++p_col) + { + const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; + const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; + const scalar_t weight = data_attn_weight[data_weight_ptr]; + + const scalar_t h_im = loc_h * spatial_h - 0.5; + const scalar_t w_im = loc_w * spatial_w - 0.5; + if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) + { + ms_deform_attn_col2im_bilinear_gm( + data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, + top_grad, weight, grad_value_ptr, + grad_sampling_loc, grad_attn_weight); + } + data_weight_ptr += 1; + data_loc_w_ptr += 2; + grad_attn_weight += grad_weight_stride; + grad_sampling_loc += grad_loc_stride; + } + } + } +} + + +template +void ms_deformable_im2col_cuda(cudaStream_t stream, + const scalar_t* data_value, + const int64_t* data_spatial_shapes, + const int64_t* data_level_start_index, + const scalar_t* data_sampling_loc, + const scalar_t* data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t* data_col) +{ + const int num_kernels = batch_size * num_query * num_heads * channels; + const int num_actual_kernels = batch_size * num_query * num_heads * channels; + const int num_threads = CUDA_NUM_THREADS; + ms_deformable_im2col_gpu_kernel + <<>>( + num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, + batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col); + + cudaError_t err = cudaGetLastError(); + if (err != cudaSuccess) + { + printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err)); + } + +} + +template +void ms_deformable_col2im_cuda(cudaStream_t stream, + const scalar_t* grad_col, + const scalar_t* data_value, + const int64_t * data_spatial_shapes, + const int64_t * data_level_start_index, + const scalar_t * data_sampling_loc, + const scalar_t * data_attn_weight, + const int batch_size, + const int spatial_size, + const int num_heads, + const int channels, + const int num_levels, + const int num_query, + const int num_point, + scalar_t* grad_value, + scalar_t* grad_sampling_loc, + scalar_t* grad_attn_weight) +{ + const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels; + const int num_kernels = batch_size * num_query * num_heads * channels; + const int num_actual_kernels = batch_size * num_query * num_heads * channels; + if (channels > 1024) + { + if ((channels & 1023) == 0) + { + ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + } + else + { + ms_deformable_col2im_gpu_kernel_gm + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + } + } + else{ + switch(channels) + { + case 1: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 2: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 4: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 8: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 16: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 32: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 64: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 128: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 256: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 512: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + case 1024: + ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + break; + default: + if (channels < 64) + { + ms_deformable_col2im_gpu_kernel_shm_reduce_v1 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + } + else + { + ms_deformable_col2im_gpu_kernel_shm_reduce_v2 + <<>>( + num_kernels, + grad_col, + data_value, + data_spatial_shapes, + data_level_start_index, + data_sampling_loc, + data_attn_weight, + batch_size, + spatial_size, + num_heads, + channels, + num_levels, + num_query, + num_point, + grad_value, + grad_sampling_loc, + grad_attn_weight); + } + } + } + cudaError_t err = cudaGetLastError(); + if (err != cudaSuccess) + { + printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err)); + } + +} \ No newline at end of file diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/cuda_version.cu b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/cuda_version.cu new file mode 100644 index 0000000000000000000000000000000000000000..64569e34ffb250964de27e33e7a53f3822270b9e --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/cuda_version.cu @@ -0,0 +1,7 @@ +#include + +namespace groundingdino { +int get_cudart_version() { + return CUDART_VERSION; +} +} // namespace groundingdino diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/csrc/vision.cpp b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/vision.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c1f2c50c82909bbd5492c163d634af77a3ba1781 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/csrc/vision.cpp @@ -0,0 +1,58 @@ +// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved + +#include "MsDeformAttn/ms_deform_attn.h" + +namespace groundingdino { + +#ifdef WITH_CUDA +extern int get_cudart_version(); +#endif + +std::string get_cuda_version() { +#ifdef WITH_CUDA + std::ostringstream oss; + + // copied from + // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/CUDAHooks.cpp#L231 + auto printCudaStyleVersion = [&](int v) { + oss << (v / 1000) << "." << (v / 10 % 100); + if (v % 10 != 0) { + oss << "." << (v % 10); + } + }; + printCudaStyleVersion(get_cudart_version()); + return oss.str(); +#else + return std::string("not available"); +#endif +} + +// similar to +// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Version.cpp +std::string get_compiler_version() { + std::ostringstream ss; +#if defined(__GNUC__) +#ifndef __clang__ + { ss << "GCC " << __GNUC__ << "." << __GNUC_MINOR__; } +#endif +#endif + +#if defined(__clang_major__) + { + ss << "clang " << __clang_major__ << "." << __clang_minor__ << "." + << __clang_patchlevel__; + } +#endif + +#if defined(_MSC_VER) + { ss << "MSVC " << _MSC_FULL_VER; } +#endif + return ss.str(); +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward"); + m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward"); +} + +} // namespace groundingdino \ No newline at end of file diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/fuse_modules.py b/GroundingDINO/groundingdino/models/GroundingDINO/fuse_modules.py new file mode 100644 index 0000000000000000000000000000000000000000..2753b3ddee43c7a9fe28d1824db5d786e7e1ad59 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/fuse_modules.py @@ -0,0 +1,297 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ + +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.models.layers import DropPath + + +class FeatureResizer(nn.Module): + """ + This class takes as input a set of embeddings of dimension C1 and outputs a set of + embedding of dimension C2, after a linear transformation, dropout and normalization (LN). + """ + + def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True): + super().__init__() + self.do_ln = do_ln + # Object feature encoding + self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) + self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) + self.dropout = nn.Dropout(dropout) + + def forward(self, encoder_features): + x = self.fc(encoder_features) + if self.do_ln: + x = self.layer_norm(x) + output = self.dropout(x) + return output + + +def l1norm(X, dim, eps=1e-8): + """L1-normalize columns of X""" + norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps + X = torch.div(X, norm) + return X + + +def l2norm(X, dim, eps=1e-8): + """L2-normalize columns of X""" + norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps + X = torch.div(X, norm) + return X + + +def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8): + """ + query: (n_context, queryL, d) + context: (n_context, sourceL, d) + """ + batch_size_q, queryL = query.size(0), query.size(1) + batch_size, sourceL = context.size(0), context.size(1) + + # Get attention + # --> (batch, d, queryL) + queryT = torch.transpose(query, 1, 2) + + # (batch, sourceL, d)(batch, d, queryL) + # --> (batch, sourceL, queryL) + attn = torch.bmm(context, queryT) + if raw_feature_norm == "softmax": + # --> (batch*sourceL, queryL) + attn = attn.view(batch_size * sourceL, queryL) + attn = nn.Softmax()(attn) + # --> (batch, sourceL, queryL) + attn = attn.view(batch_size, sourceL, queryL) + elif raw_feature_norm == "l2norm": + attn = l2norm(attn, 2) + elif raw_feature_norm == "clipped_l2norm": + attn = nn.LeakyReLU(0.1)(attn) + attn = l2norm(attn, 2) + else: + raise ValueError("unknown first norm type:", raw_feature_norm) + # --> (batch, queryL, sourceL) + attn = torch.transpose(attn, 1, 2).contiguous() + # --> (batch*queryL, sourceL) + attn = attn.view(batch_size * queryL, sourceL) + attn = nn.Softmax()(attn * smooth) + # --> (batch, queryL, sourceL) + attn = attn.view(batch_size, queryL, sourceL) + # --> (batch, sourceL, queryL) + attnT = torch.transpose(attn, 1, 2).contiguous() + + # --> (batch, d, sourceL) + contextT = torch.transpose(context, 1, 2) + # (batch x d x sourceL)(batch x sourceL x queryL) + # --> (batch, d, queryL) + weightedContext = torch.bmm(contextT, attnT) + # --> (batch, queryL, d) + weightedContext = torch.transpose(weightedContext, 1, 2) + + return weightedContext, attnT + + +class BiMultiHeadAttention(nn.Module): + def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None): + super(BiMultiHeadAttention, self).__init__() + + self.embed_dim = embed_dim + self.num_heads = num_heads + self.head_dim = embed_dim // num_heads + self.v_dim = v_dim + self.l_dim = l_dim + + assert ( + self.head_dim * self.num_heads == self.embed_dim + ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." + self.scale = self.head_dim ** (-0.5) + self.dropout = dropout + + self.v_proj = nn.Linear(self.v_dim, self.embed_dim) + self.l_proj = nn.Linear(self.l_dim, self.embed_dim) + self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim) + self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim) + + self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim) + self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim) + + self.stable_softmax_2d = True + self.clamp_min_for_underflow = True + self.clamp_max_for_overflow = True + + self._reset_parameters() + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def _reset_parameters(self): + nn.init.xavier_uniform_(self.v_proj.weight) + self.v_proj.bias.data.fill_(0) + nn.init.xavier_uniform_(self.l_proj.weight) + self.l_proj.bias.data.fill_(0) + nn.init.xavier_uniform_(self.values_v_proj.weight) + self.values_v_proj.bias.data.fill_(0) + nn.init.xavier_uniform_(self.values_l_proj.weight) + self.values_l_proj.bias.data.fill_(0) + nn.init.xavier_uniform_(self.out_v_proj.weight) + self.out_v_proj.bias.data.fill_(0) + nn.init.xavier_uniform_(self.out_l_proj.weight) + self.out_l_proj.bias.data.fill_(0) + + def forward(self, v, l, attention_mask_v=None, attention_mask_l=None): + """_summary_ + + Args: + v (_type_): bs, n_img, dim + l (_type_): bs, n_text, dim + attention_mask_v (_type_, optional): _description_. bs, n_img + attention_mask_l (_type_, optional): _description_. bs, n_text + + Returns: + _type_: _description_ + """ + # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': + # import ipdb; ipdb.set_trace() + bsz, tgt_len, _ = v.size() + + query_states = self.v_proj(v) * self.scale + key_states = self._shape(self.l_proj(l), -1, bsz) + value_v_states = self._shape(self.values_v_proj(v), -1, bsz) + value_l_states = self._shape(self.values_l_proj(l), -1, bsz) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_v_states = value_v_states.view(*proj_shape) + value_l_states = value_l_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" + ) + + if self.stable_softmax_2d: + attn_weights = attn_weights - attn_weights.max() + + if self.clamp_min_for_underflow: + attn_weights = torch.clamp( + attn_weights, min=-50000 + ) # Do not increase -50000, data type half has quite limited range + if self.clamp_max_for_overflow: + attn_weights = torch.clamp( + attn_weights, max=50000 + ) # Do not increase 50000, data type half has quite limited range + + attn_weights_T = attn_weights.transpose(1, 2) + attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0] + if self.clamp_min_for_underflow: + attn_weights_l = torch.clamp( + attn_weights_l, min=-50000 + ) # Do not increase -50000, data type half has quite limited range + if self.clamp_max_for_overflow: + attn_weights_l = torch.clamp( + attn_weights_l, max=50000 + ) # Do not increase 50000, data type half has quite limited range + + # mask vison for language + if attention_mask_v is not None: + attention_mask_v = ( + attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1) + ) + attn_weights_l.masked_fill_(attention_mask_v, float("-inf")) + + attn_weights_l = attn_weights_l.softmax(dim=-1) + + # mask language for vision + if attention_mask_l is not None: + attention_mask_l = ( + attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1) + ) + attn_weights.masked_fill_(attention_mask_l, float("-inf")) + attn_weights_v = attn_weights.softmax(dim=-1) + + attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training) + attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training) + + attn_output_v = torch.bmm(attn_probs_v, value_l_states) + attn_output_l = torch.bmm(attn_probs_l, value_v_states) + + if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}" + ) + + if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim): + raise ValueError( + f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}" + ) + + attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output_v = attn_output_v.transpose(1, 2) + attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim) + + attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim) + attn_output_l = attn_output_l.transpose(1, 2) + attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim) + + attn_output_v = self.out_v_proj(attn_output_v) + attn_output_l = self.out_l_proj(attn_output_l) + + return attn_output_v, attn_output_l + + +# Bi-Direction MHA (text->image, image->text) +class BiAttentionBlock(nn.Module): + def __init__( + self, + v_dim, + l_dim, + embed_dim, + num_heads, + dropout=0.1, + drop_path=0.0, + init_values=1e-4, + cfg=None, + ): + """ + Inputs: + embed_dim - Dimensionality of input and attention feature vectors + hidden_dim - Dimensionality of hidden layer in feed-forward network + (usually 2-4x larger than embed_dim) + num_heads - Number of heads to use in the Multi-Head Attention block + dropout - Amount of dropout to apply in the feed-forward network + """ + super(BiAttentionBlock, self).__init__() + + # pre layer norm + self.layer_norm_v = nn.LayerNorm(v_dim) + self.layer_norm_l = nn.LayerNorm(l_dim) + self.attn = BiMultiHeadAttention( + v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout + ) + + # add layer scale for training stability + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) + self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) + + def forward(self, v, l, attention_mask_v=None, attention_mask_l=None): + v = self.layer_norm_v(v) + l = self.layer_norm_l(l) + delta_v, delta_l = self.attn( + v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l + ) + # v, l = v + delta_v, l + delta_l + v = v + self.drop_path(self.gamma_v * delta_v) + l = l + self.drop_path(self.gamma_l * delta_l) + return v, l + + # def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None) diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/groundingdino.py b/GroundingDINO/groundingdino/models/GroundingDINO/groundingdino.py new file mode 100644 index 0000000000000000000000000000000000000000..052df6220595a1b39b7e2aea37ca4872d113dfd2 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/groundingdino.py @@ -0,0 +1,395 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Conditional DETR model and criterion classes. +# Copyright (c) 2021 Microsoft. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Modified from DETR (https://github.com/facebookresearch/detr) +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. +# ------------------------------------------------------------------------ +# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) +# Copyright (c) 2020 SenseTime. All Rights Reserved. +# ------------------------------------------------------------------------ +import copy +from typing import List + +import torch +import torch.nn.functional as F +from torch import nn +from torchvision.ops.boxes import nms +from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast + +from groundingdino.util import box_ops, get_tokenlizer +from groundingdino.util.misc import ( + NestedTensor, + accuracy, + get_world_size, + interpolate, + inverse_sigmoid, + is_dist_avail_and_initialized, + nested_tensor_from_tensor_list, +) +from groundingdino.util.utils import get_phrases_from_posmap +from groundingdino.util.visualizer import COCOVisualizer +from groundingdino.util.vl_utils import create_positive_map_from_span + +from ..registry import MODULE_BUILD_FUNCS +from .backbone import build_backbone +from .bertwarper import ( + BertModelWarper, + generate_masks_with_special_tokens, + generate_masks_with_special_tokens_and_transfer_map, +) +from .transformer import build_transformer +from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss + + +class GroundingDINO(nn.Module): + """This is the Cross-Attention Detector module that performs object detection""" + + def __init__( + self, + backbone, + transformer, + num_queries, + aux_loss=False, + iter_update=False, + query_dim=2, + num_feature_levels=1, + nheads=8, + # two stage + two_stage_type="no", # ['no', 'standard'] + dec_pred_bbox_embed_share=True, + two_stage_class_embed_share=True, + two_stage_bbox_embed_share=True, + num_patterns=0, + dn_number=100, + dn_box_noise_scale=0.4, + dn_label_noise_ratio=0.5, + dn_labelbook_size=100, + text_encoder_type="bert-base-uncased", + sub_sentence_present=True, + max_text_len=256, + ): + """Initializes the model. + Parameters: + backbone: torch module of the backbone to be used. See backbone.py + transformer: torch module of the transformer architecture. See transformer.py + num_queries: number of object queries, ie detection slot. This is the maximal number of objects + Conditional DETR can detect in a single image. For COCO, we recommend 100 queries. + aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. + """ + super().__init__() + self.num_queries = num_queries + self.transformer = transformer + self.hidden_dim = hidden_dim = transformer.d_model + self.num_feature_levels = num_feature_levels + self.nheads = nheads + self.max_text_len = 256 + self.sub_sentence_present = sub_sentence_present + + # setting query dim + self.query_dim = query_dim + assert query_dim == 4 + + # for dn training + self.num_patterns = num_patterns + self.dn_number = dn_number + self.dn_box_noise_scale = dn_box_noise_scale + self.dn_label_noise_ratio = dn_label_noise_ratio + self.dn_labelbook_size = dn_labelbook_size + + # bert + self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type) + self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type) + self.bert.pooler.dense.weight.requires_grad_(False) + self.bert.pooler.dense.bias.requires_grad_(False) + self.bert = BertModelWarper(bert_model=self.bert) + + self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True) + nn.init.constant_(self.feat_map.bias.data, 0) + nn.init.xavier_uniform_(self.feat_map.weight.data) + # freeze + + # special tokens + self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"]) + + # prepare input projection layers + if num_feature_levels > 1: + num_backbone_outs = len(backbone.num_channels) + input_proj_list = [] + for _ in range(num_backbone_outs): + in_channels = backbone.num_channels[_] + input_proj_list.append( + nn.Sequential( + nn.Conv2d(in_channels, hidden_dim, kernel_size=1), + nn.GroupNorm(32, hidden_dim), + ) + ) + for _ in range(num_feature_levels - num_backbone_outs): + input_proj_list.append( + nn.Sequential( + nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), + nn.GroupNorm(32, hidden_dim), + ) + ) + in_channels = hidden_dim + self.input_proj = nn.ModuleList(input_proj_list) + else: + assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!" + self.input_proj = nn.ModuleList( + [ + nn.Sequential( + nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1), + nn.GroupNorm(32, hidden_dim), + ) + ] + ) + + self.backbone = backbone + self.aux_loss = aux_loss + self.box_pred_damping = box_pred_damping = None + + self.iter_update = iter_update + assert iter_update, "Why not iter_update?" + + # prepare pred layers + self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share + # prepare class & box embed + _class_embed = ContrastiveEmbed() + + _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) + nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0) + nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0) + + if dec_pred_bbox_embed_share: + box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)] + else: + box_embed_layerlist = [ + copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers) + ] + class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)] + self.bbox_embed = nn.ModuleList(box_embed_layerlist) + self.class_embed = nn.ModuleList(class_embed_layerlist) + self.transformer.decoder.bbox_embed = self.bbox_embed + self.transformer.decoder.class_embed = self.class_embed + + # two stage + self.two_stage_type = two_stage_type + assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format( + two_stage_type + ) + if two_stage_type != "no": + if two_stage_bbox_embed_share: + assert dec_pred_bbox_embed_share + self.transformer.enc_out_bbox_embed = _bbox_embed + else: + self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed) + + if two_stage_class_embed_share: + assert dec_pred_bbox_embed_share + self.transformer.enc_out_class_embed = _class_embed + else: + self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed) + + self.refpoint_embed = None + + self._reset_parameters() + + def _reset_parameters(self): + # init input_proj + for proj in self.input_proj: + nn.init.xavier_uniform_(proj[0].weight, gain=1) + nn.init.constant_(proj[0].bias, 0) + + def init_ref_points(self, use_num_queries): + self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim) + + def forward(self, samples: NestedTensor, targets: List = None, **kw): + """The forward expects a NestedTensor, which consists of: + - samples.tensor: batched images, of shape [batch_size x 3 x H x W] + - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels + + It returns a dict with the following elements: + - "pred_logits": the classification logits (including no-object) for all queries. + Shape= [batch_size x num_queries x num_classes] + - "pred_boxes": The normalized boxes coordinates for all queries, represented as + (center_x, center_y, width, height). These values are normalized in [0, 1], + relative to the size of each individual image (disregarding possible padding). + See PostProcess for information on how to retrieve the unnormalized bounding box. + - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of + dictionnaries containing the two above keys for each decoder layer. + """ + if targets is None: + captions = kw["captions"] + else: + captions = [t["caption"] for t in targets] + len(captions) + + # encoder texts + tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to( + samples.device + ) + ( + text_self_attention_masks, + position_ids, + cate_to_token_mask_list, + ) = generate_masks_with_special_tokens_and_transfer_map( + tokenized, self.specical_tokens, self.tokenizer + ) + + if text_self_attention_masks.shape[1] > self.max_text_len: + text_self_attention_masks = text_self_attention_masks[ + :, : self.max_text_len, : self.max_text_len + ] + position_ids = position_ids[:, : self.max_text_len] + tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len] + tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len] + tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len] + + # extract text embeddings + if self.sub_sentence_present: + tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"} + tokenized_for_encoder["attention_mask"] = text_self_attention_masks + tokenized_for_encoder["position_ids"] = position_ids + else: + # import ipdb; ipdb.set_trace() + tokenized_for_encoder = tokenized + + bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768 + + encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model + text_token_mask = tokenized.attention_mask.bool() # bs, 195 + # text_token_mask: True for nomask, False for mask + # text_self_attention_masks: True for nomask, False for mask + + if encoded_text.shape[1] > self.max_text_len: + encoded_text = encoded_text[:, : self.max_text_len, :] + text_token_mask = text_token_mask[:, : self.max_text_len] + position_ids = position_ids[:, : self.max_text_len] + text_self_attention_masks = text_self_attention_masks[ + :, : self.max_text_len, : self.max_text_len + ] + + text_dict = { + "encoded_text": encoded_text, # bs, 195, d_model + "text_token_mask": text_token_mask, # bs, 195 + "position_ids": position_ids, # bs, 195 + "text_self_attention_masks": text_self_attention_masks, # bs, 195,195 + } + + # import ipdb; ipdb.set_trace() + + if isinstance(samples, (list, torch.Tensor)): + samples = nested_tensor_from_tensor_list(samples) + features, poss = self.backbone(samples) + + srcs = [] + masks = [] + for l, feat in enumerate(features): + src, mask = feat.decompose() + srcs.append(self.input_proj[l](src)) + masks.append(mask) + assert mask is not None + if self.num_feature_levels > len(srcs): + _len_srcs = len(srcs) + for l in range(_len_srcs, self.num_feature_levels): + if l == _len_srcs: + src = self.input_proj[l](features[-1].tensors) + else: + src = self.input_proj[l](srcs[-1]) + m = samples.mask + mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] + pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) + srcs.append(src) + masks.append(mask) + poss.append(pos_l) + + input_query_bbox = input_query_label = attn_mask = dn_meta = None + hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer( + srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict + ) + + # deformable-detr-like anchor update + outputs_coord_list = [] + for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate( + zip(reference[:-1], self.bbox_embed, hs) + ): + layer_delta_unsig = layer_bbox_embed(layer_hs) + layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig) + layer_outputs_unsig = layer_outputs_unsig.sigmoid() + outputs_coord_list.append(layer_outputs_unsig) + outputs_coord_list = torch.stack(outputs_coord_list) + + # output + outputs_class = torch.stack( + [ + layer_cls_embed(layer_hs, text_dict) + for layer_cls_embed, layer_hs in zip(self.class_embed, hs) + ] + ) + out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]} + + # # for intermediate outputs + # if self.aux_loss: + # out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list) + + # # for encoder output + # if hs_enc is not None: + # # prepare intermediate outputs + # interm_coord = ref_enc[-1] + # interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict) + # out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord} + # out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal} + + return out + + @torch.jit.unused + def _set_aux_loss(self, outputs_class, outputs_coord): + # this is a workaround to make torchscript happy, as torchscript + # doesn't support dictionary with non-homogeneous values, such + # as a dict having both a Tensor and a list. + return [ + {"pred_logits": a, "pred_boxes": b} + for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) + ] + + +@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino") +def build_groundingdino(args): + + backbone = build_backbone(args) + transformer = build_transformer(args) + + dn_labelbook_size = args.dn_labelbook_size + dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share + sub_sentence_present = args.sub_sentence_present + + model = GroundingDINO( + backbone, + transformer, + num_queries=args.num_queries, + aux_loss=True, + iter_update=True, + query_dim=4, + num_feature_levels=args.num_feature_levels, + nheads=args.nheads, + dec_pred_bbox_embed_share=dec_pred_bbox_embed_share, + two_stage_type=args.two_stage_type, + two_stage_bbox_embed_share=args.two_stage_bbox_embed_share, + two_stage_class_embed_share=args.two_stage_class_embed_share, + num_patterns=args.num_patterns, + dn_number=0, + dn_box_noise_scale=args.dn_box_noise_scale, + dn_label_noise_ratio=args.dn_label_noise_ratio, + dn_labelbook_size=dn_labelbook_size, + text_encoder_type=args.text_encoder_type, + sub_sentence_present=sub_sentence_present, + max_text_len=args.max_text_len, + ) + + return model diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/ms_deform_attn.py b/GroundingDINO/groundingdino/models/GroundingDINO/ms_deform_attn.py new file mode 100644 index 0000000000000000000000000000000000000000..489d501bef364020212306d81e9b85c8daa27491 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/ms_deform_attn.py @@ -0,0 +1,413 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Deformable DETR +# Copyright (c) 2020 SenseTime. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------------------------------ +# Modified from: +# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py +# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py +# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py +# ------------------------------------------------------------------------------------------------ + +import math +import warnings +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.autograd import Function +from torch.autograd.function import once_differentiable +from torch.nn.init import constant_, xavier_uniform_ + +try: + from groundingdino import _C +except: + warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!") + + +# helpers +def _is_power_of_2(n): + if (not isinstance(n, int)) or (n < 0): + raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) + return (n & (n - 1) == 0) and n != 0 + + +class MultiScaleDeformableAttnFunction(Function): + @staticmethod + def forward( + ctx, + value, + value_spatial_shapes, + value_level_start_index, + sampling_locations, + attention_weights, + im2col_step, + ): + ctx.im2col_step = im2col_step + output = _C.ms_deform_attn_forward( + value, + value_spatial_shapes, + value_level_start_index, + sampling_locations, + attention_weights, + ctx.im2col_step, + ) + ctx.save_for_backward( + value, + value_spatial_shapes, + value_level_start_index, + sampling_locations, + attention_weights, + ) + return output + + @staticmethod + @once_differentiable + def backward(ctx, grad_output): + ( + value, + value_spatial_shapes, + value_level_start_index, + sampling_locations, + attention_weights, + ) = ctx.saved_tensors + grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward( + value, + value_spatial_shapes, + value_level_start_index, + sampling_locations, + attention_weights, + grad_output, + ctx.im2col_step, + ) + + return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None + + +def multi_scale_deformable_attn_pytorch( + value: torch.Tensor, + value_spatial_shapes: torch.Tensor, + sampling_locations: torch.Tensor, + attention_weights: torch.Tensor, +) -> torch.Tensor: + + bs, _, num_heads, embed_dims = value.shape + _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape + value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) + sampling_grids = 2 * sampling_locations - 1 + sampling_value_list = [] + for level, (H_, W_) in enumerate(value_spatial_shapes): + # bs, H_*W_, num_heads, embed_dims -> + # bs, H_*W_, num_heads*embed_dims -> + # bs, num_heads*embed_dims, H_*W_ -> + # bs*num_heads, embed_dims, H_, W_ + value_l_ = ( + value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_) + ) + # bs, num_queries, num_heads, num_points, 2 -> + # bs, num_heads, num_queries, num_points, 2 -> + # bs*num_heads, num_queries, num_points, 2 + sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) + # bs*num_heads, embed_dims, num_queries, num_points + sampling_value_l_ = F.grid_sample( + value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False + ) + sampling_value_list.append(sampling_value_l_) + # (bs, num_queries, num_heads, num_levels, num_points) -> + # (bs, num_heads, num_queries, num_levels, num_points) -> + # (bs, num_heads, 1, num_queries, num_levels*num_points) + attention_weights = attention_weights.transpose(1, 2).reshape( + bs * num_heads, 1, num_queries, num_levels * num_points + ) + output = ( + (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) + .sum(-1) + .view(bs, num_heads * embed_dims, num_queries) + ) + return output.transpose(1, 2).contiguous() + + +class MultiScaleDeformableAttention(nn.Module): + """Multi-Scale Deformable Attention Module used in Deformable-DETR + + `Deformable DETR: Deformable Transformers for End-to-End Object Detection. + `_. + + Args: + embed_dim (int): The embedding dimension of Attention. Default: 256. + num_heads (int): The number of attention heads. Default: 8. + num_levels (int): The number of feature map used in Attention. Default: 4. + num_points (int): The number of sampling points for each query + in each head. Default: 4. + img2col_steps (int): The step used in image_to_column. Defualt: 64. + dropout (float): Dropout layer used in output. Default: 0.1. + batch_first (bool): if ``True``, then the input and output tensor will be + provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)` + """ + + def __init__( + self, + embed_dim: int = 256, + num_heads: int = 8, + num_levels: int = 4, + num_points: int = 4, + img2col_step: int = 64, + batch_first: bool = False, + ): + super().__init__() + if embed_dim % num_heads != 0: + raise ValueError( + "embed_dim must be divisible by num_heads, but got {} and {}".format( + embed_dim, num_heads + ) + ) + head_dim = embed_dim // num_heads + + self.batch_first = batch_first + + if not _is_power_of_2(head_dim): + warnings.warn( + """ + You'd better set d_model in MSDeformAttn to make sure that + each dim of the attention head a power of 2, which is more efficient. + """ + ) + + self.im2col_step = img2col_step + self.embed_dim = embed_dim + self.num_heads = num_heads + self.num_levels = num_levels + self.num_points = num_points + self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2) + self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points) + self.value_proj = nn.Linear(embed_dim, embed_dim) + self.output_proj = nn.Linear(embed_dim, embed_dim) + + self.init_weights() + + def _reset_parameters(self): + return self.init_weights() + + def init_weights(self): + """ + Default initialization for Parameters of Module. + """ + constant_(self.sampling_offsets.weight.data, 0.0) + thetas = torch.arange(self.num_heads, dtype=torch.float32) * ( + 2.0 * math.pi / self.num_heads + ) + grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) + grid_init = ( + (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) + .view(self.num_heads, 1, 1, 2) + .repeat(1, self.num_levels, self.num_points, 1) + ) + for i in range(self.num_points): + grid_init[:, :, i, :] *= i + 1 + with torch.no_grad(): + self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) + constant_(self.attention_weights.weight.data, 0.0) + constant_(self.attention_weights.bias.data, 0.0) + xavier_uniform_(self.value_proj.weight.data) + constant_(self.value_proj.bias.data, 0.0) + xavier_uniform_(self.output_proj.weight.data) + constant_(self.output_proj.bias.data, 0.0) + + def freeze_sampling_offsets(self): + print("Freeze sampling offsets") + self.sampling_offsets.weight.requires_grad = False + self.sampling_offsets.bias.requires_grad = False + + def freeze_attention_weights(self): + print("Freeze attention weights") + self.attention_weights.weight.requires_grad = False + self.attention_weights.bias.requires_grad = False + + def forward( + self, + query: torch.Tensor, + key: Optional[torch.Tensor] = None, + value: Optional[torch.Tensor] = None, + query_pos: Optional[torch.Tensor] = None, + key_padding_mask: Optional[torch.Tensor] = None, + reference_points: Optional[torch.Tensor] = None, + spatial_shapes: Optional[torch.Tensor] = None, + level_start_index: Optional[torch.Tensor] = None, + **kwargs + ) -> torch.Tensor: + + """Forward Function of MultiScaleDeformableAttention + + Args: + query (torch.Tensor): Query embeddings with shape + `(num_query, bs, embed_dim)` + key (torch.Tensor): Key embeddings with shape + `(num_key, bs, embed_dim)` + value (torch.Tensor): Value embeddings with shape + `(num_key, bs, embed_dim)` + query_pos (torch.Tensor): The position embedding for `query`. Default: None. + key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`, + indicating which elements within `key` to be ignored in attention. + reference_points (torch.Tensor): The normalized reference points + with shape `(bs, num_query, num_levels, 2)`, + all elements is range in [0, 1], top-left (0, 0), + bottom-right (1, 1), including padding are. + or `(N, Length_{query}, num_levels, 4)`, add additional + two dimensions `(h, w)` to form reference boxes. + spatial_shapes (torch.Tensor): Spatial shape of features in different levels. + With shape `(num_levels, 2)`, last dimension represents `(h, w)`. + level_start_index (torch.Tensor): The start index of each level. A tensor with + shape `(num_levels, )` which can be represented as + `[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`. + + Returns: + torch.Tensor: forward results with shape `(num_query, bs, embed_dim)` + """ + + if value is None: + value = query + + if query_pos is not None: + query = query + query_pos + + if not self.batch_first: + # change to (bs, num_query ,embed_dims) + query = query.permute(1, 0, 2) + value = value.permute(1, 0, 2) + + bs, num_query, _ = query.shape + bs, num_value, _ = value.shape + + assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value + + value = self.value_proj(value) + if key_padding_mask is not None: + value = value.masked_fill(key_padding_mask[..., None], float(0)) + value = value.view(bs, num_value, self.num_heads, -1) + sampling_offsets = self.sampling_offsets(query).view( + bs, num_query, self.num_heads, self.num_levels, self.num_points, 2 + ) + attention_weights = self.attention_weights(query).view( + bs, num_query, self.num_heads, self.num_levels * self.num_points + ) + attention_weights = attention_weights.softmax(-1) + attention_weights = attention_weights.view( + bs, + num_query, + self.num_heads, + self.num_levels, + self.num_points, + ) + + # bs, num_query, num_heads, num_levels, num_points, 2 + if reference_points.shape[-1] == 2: + offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) + sampling_locations = ( + reference_points[:, :, None, :, None, :] + + sampling_offsets / offset_normalizer[None, None, None, :, None, :] + ) + elif reference_points.shape[-1] == 4: + sampling_locations = ( + reference_points[:, :, None, :, None, :2] + + sampling_offsets + / self.num_points + * reference_points[:, :, None, :, None, 2:] + * 0.5 + ) + else: + raise ValueError( + "Last dim of reference_points must be 2 or 4, but get {} instead.".format( + reference_points.shape[-1] + ) + ) + + if torch.cuda.is_available() and value.is_cuda: + halffloat = False + if value.dtype == torch.float16: + halffloat = True + value = value.float() + sampling_locations = sampling_locations.float() + attention_weights = attention_weights.float() + + output = MultiScaleDeformableAttnFunction.apply( + value, + spatial_shapes, + level_start_index, + sampling_locations, + attention_weights, + self.im2col_step, + ) + + if halffloat: + output = output.half() + else: + output = multi_scale_deformable_attn_pytorch( + value, spatial_shapes, sampling_locations, attention_weights + ) + + output = self.output_proj(output) + + if not self.batch_first: + output = output.permute(1, 0, 2) + + return output + + +def create_dummy_class(klass, dependency, message=""): + """ + When a dependency of a class is not available, create a dummy class which throws ImportError + when used. + + Args: + klass (str): name of the class. + dependency (str): name of the dependency. + message: extra message to print + Returns: + class: a class object + """ + err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass) + if message: + err = err + " " + message + + class _DummyMetaClass(type): + # throw error on class attribute access + def __getattr__(_, __): # noqa: B902 + raise ImportError(err) + + class _Dummy(object, metaclass=_DummyMetaClass): + # throw error on constructor + def __init__(self, *args, **kwargs): + raise ImportError(err) + + return _Dummy + + +def create_dummy_func(func, dependency, message=""): + """ + When a dependency of a function is not available, create a dummy function which throws + ImportError when used. + + Args: + func (str): name of the function. + dependency (str or list[str]): name(s) of the dependency. + message: extra message to print + Returns: + function: a function object + """ + err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func) + if message: + err = err + " " + message + + if isinstance(dependency, (list, tuple)): + dependency = ",".join(dependency) + + def _dummy(*args, **kwargs): + raise ImportError(err) + + return _dummy diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/transformer.py b/GroundingDINO/groundingdino/models/GroundingDINO/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..fcb8742dbdde6e80fd38b11d064211f6935aae76 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/transformer.py @@ -0,0 +1,959 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# DINO +# Copyright (c) 2022 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Conditional DETR Transformer class. +# Copyright (c) 2021 Microsoft. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Modified from DETR (https://github.com/facebookresearch/detr) +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. +# ------------------------------------------------------------------------ + +from typing import Optional + +import torch +import torch.utils.checkpoint as checkpoint +from torch import Tensor, nn + +from groundingdino.util.misc import inverse_sigmoid + +from .fuse_modules import BiAttentionBlock +from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn +from .transformer_vanilla import TransformerEncoderLayer +from .utils import ( + MLP, + _get_activation_fn, + _get_clones, + gen_encoder_output_proposals, + gen_sineembed_for_position, + get_sine_pos_embed, +) + + +class Transformer(nn.Module): + def __init__( + self, + d_model=256, + nhead=8, + num_queries=300, + num_encoder_layers=6, + num_unicoder_layers=0, + num_decoder_layers=6, + dim_feedforward=2048, + dropout=0.0, + activation="relu", + normalize_before=False, + return_intermediate_dec=False, + query_dim=4, + num_patterns=0, + # for deformable encoder + num_feature_levels=1, + enc_n_points=4, + dec_n_points=4, + # init query + learnable_tgt_init=False, + # two stage + two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1'] + embed_init_tgt=False, + # for text + use_text_enhancer=False, + use_fusion_layer=False, + use_checkpoint=False, + use_transformer_ckpt=False, + use_text_cross_attention=False, + text_dropout=0.1, + fusion_dropout=0.1, + fusion_droppath=0.0, + ): + super().__init__() + self.num_feature_levels = num_feature_levels + self.num_encoder_layers = num_encoder_layers + self.num_unicoder_layers = num_unicoder_layers + self.num_decoder_layers = num_decoder_layers + self.num_queries = num_queries + assert query_dim == 4 + + # choose encoder layer type + encoder_layer = DeformableTransformerEncoderLayer( + d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points + ) + + if use_text_enhancer: + text_enhance_layer = TransformerEncoderLayer( + d_model=d_model, + nhead=nhead // 2, + dim_feedforward=dim_feedforward // 2, + dropout=text_dropout, + ) + else: + text_enhance_layer = None + + if use_fusion_layer: + feature_fusion_layer = BiAttentionBlock( + v_dim=d_model, + l_dim=d_model, + embed_dim=dim_feedforward // 2, + num_heads=nhead // 2, + dropout=fusion_dropout, + drop_path=fusion_droppath, + ) + else: + feature_fusion_layer = None + + encoder_norm = nn.LayerNorm(d_model) if normalize_before else None + assert encoder_norm is None + self.encoder = TransformerEncoder( + encoder_layer, + num_encoder_layers, + d_model=d_model, + num_queries=num_queries, + text_enhance_layer=text_enhance_layer, + feature_fusion_layer=feature_fusion_layer, + use_checkpoint=use_checkpoint, + use_transformer_ckpt=use_transformer_ckpt, + ) + + # choose decoder layer type + decoder_layer = DeformableTransformerDecoderLayer( + d_model, + dim_feedforward, + dropout, + activation, + num_feature_levels, + nhead, + dec_n_points, + use_text_cross_attention=use_text_cross_attention, + ) + + decoder_norm = nn.LayerNorm(d_model) + self.decoder = TransformerDecoder( + decoder_layer, + num_decoder_layers, + decoder_norm, + return_intermediate=return_intermediate_dec, + d_model=d_model, + query_dim=query_dim, + num_feature_levels=num_feature_levels, + ) + + self.d_model = d_model + self.nhead = nhead + self.dec_layers = num_decoder_layers + self.num_queries = num_queries # useful for single stage model only + self.num_patterns = num_patterns + if not isinstance(num_patterns, int): + Warning("num_patterns should be int but {}".format(type(num_patterns))) + self.num_patterns = 0 + + if num_feature_levels > 1: + if self.num_encoder_layers > 0: + self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) + else: + self.level_embed = None + + self.learnable_tgt_init = learnable_tgt_init + assert learnable_tgt_init, "why not learnable_tgt_init" + self.embed_init_tgt = embed_init_tgt + if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"): + self.tgt_embed = nn.Embedding(self.num_queries, d_model) + nn.init.normal_(self.tgt_embed.weight.data) + else: + self.tgt_embed = None + + # for two stage + self.two_stage_type = two_stage_type + assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format( + two_stage_type + ) + if two_stage_type == "standard": + # anchor selection at the output of encoder + self.enc_output = nn.Linear(d_model, d_model) + self.enc_output_norm = nn.LayerNorm(d_model) + self.two_stage_wh_embedding = None + + if two_stage_type == "no": + self.init_ref_points(num_queries) # init self.refpoint_embed + + self.enc_out_class_embed = None + self.enc_out_bbox_embed = None + + self._reset_parameters() + + def _reset_parameters(self): + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + for m in self.modules(): + if isinstance(m, MSDeformAttn): + m._reset_parameters() + if self.num_feature_levels > 1 and self.level_embed is not None: + nn.init.normal_(self.level_embed) + + def get_valid_ratio(self, mask): + _, H, W = mask.shape + valid_H = torch.sum(~mask[:, :, 0], 1) + valid_W = torch.sum(~mask[:, 0, :], 1) + valid_ratio_h = valid_H.float() / H + valid_ratio_w = valid_W.float() / W + valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) + return valid_ratio + + def init_ref_points(self, use_num_queries): + self.refpoint_embed = nn.Embedding(use_num_queries, 4) + + def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None): + """ + Input: + - srcs: List of multi features [bs, ci, hi, wi] + - masks: List of multi masks [bs, hi, wi] + - refpoint_embed: [bs, num_dn, 4]. None in infer + - pos_embeds: List of multi pos embeds [bs, ci, hi, wi] + - tgt: [bs, num_dn, d_model]. None in infer + + """ + # prepare input for encoder + src_flatten = [] + mask_flatten = [] + lvl_pos_embed_flatten = [] + spatial_shapes = [] + for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): + bs, c, h, w = src.shape + spatial_shape = (h, w) + spatial_shapes.append(spatial_shape) + + src = src.flatten(2).transpose(1, 2) # bs, hw, c + mask = mask.flatten(1) # bs, hw + pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c + if self.num_feature_levels > 1 and self.level_embed is not None: + lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) + else: + lvl_pos_embed = pos_embed + lvl_pos_embed_flatten.append(lvl_pos_embed) + src_flatten.append(src) + mask_flatten.append(mask) + src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c + mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw} + lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c + spatial_shapes = torch.as_tensor( + spatial_shapes, dtype=torch.long, device=src_flatten.device + ) + level_start_index = torch.cat( + (spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]) + ) + valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) + + # two stage + enc_topk_proposals = enc_refpoint_embed = None + + ######################################################### + # Begin Encoder + ######################################################### + memory, memory_text = self.encoder( + src_flatten, + pos=lvl_pos_embed_flatten, + level_start_index=level_start_index, + spatial_shapes=spatial_shapes, + valid_ratios=valid_ratios, + key_padding_mask=mask_flatten, + memory_text=text_dict["encoded_text"], + text_attention_mask=~text_dict["text_token_mask"], + # we ~ the mask . False means use the token; True means pad the token + position_ids=text_dict["position_ids"], + text_self_attention_masks=text_dict["text_self_attention_masks"], + ) + ######################################################### + # End Encoder + # - memory: bs, \sum{hw}, c + # - mask_flatten: bs, \sum{hw} + # - lvl_pos_embed_flatten: bs, \sum{hw}, c + # - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c) + # - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c) + ######################################################### + text_dict["encoded_text"] = memory_text + # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1': + # if memory.isnan().any() | memory.isinf().any(): + # import ipdb; ipdb.set_trace() + + if self.two_stage_type == "standard": + output_memory, output_proposals = gen_encoder_output_proposals( + memory, mask_flatten, spatial_shapes + ) + output_memory = self.enc_output_norm(self.enc_output(output_memory)) + + if text_dict is not None: + enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict) + else: + enc_outputs_class_unselected = self.enc_out_class_embed(output_memory) + + topk_logits = enc_outputs_class_unselected.max(-1)[0] + enc_outputs_coord_unselected = ( + self.enc_out_bbox_embed(output_memory) + output_proposals + ) # (bs, \sum{hw}, 4) unsigmoid + topk = self.num_queries + + topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq + + # gather boxes + refpoint_embed_undetach = torch.gather( + enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4) + ) # unsigmoid + refpoint_embed_ = refpoint_embed_undetach.detach() + init_box_proposal = torch.gather( + output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4) + ).sigmoid() # sigmoid + + # gather tgt + tgt_undetach = torch.gather( + output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model) + ) + if self.embed_init_tgt: + tgt_ = ( + self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) + ) # nq, bs, d_model + else: + tgt_ = tgt_undetach.detach() + + if refpoint_embed is not None: + refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1) + tgt = torch.cat([tgt, tgt_], dim=1) + else: + refpoint_embed, tgt = refpoint_embed_, tgt_ + + elif self.two_stage_type == "no": + tgt_ = ( + self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) + ) # nq, bs, d_model + refpoint_embed_ = ( + self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) + ) # nq, bs, 4 + + if refpoint_embed is not None: + refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1) + tgt = torch.cat([tgt, tgt_], dim=1) + else: + refpoint_embed, tgt = refpoint_embed_, tgt_ + + if self.num_patterns > 0: + tgt_embed = tgt.repeat(1, self.num_patterns, 1) + refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1) + tgt_pat = self.patterns.weight[None, :, :].repeat_interleave( + self.num_queries, 1 + ) # 1, n_q*n_pat, d_model + tgt = tgt_embed + tgt_pat + + init_box_proposal = refpoint_embed_.sigmoid() + + else: + raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type)) + ######################################################### + # End preparing tgt + # - tgt: bs, NQ, d_model + # - refpoint_embed(unsigmoid): bs, NQ, d_model + ######################################################### + + ######################################################### + # Begin Decoder + ######################################################### + hs, references = self.decoder( + tgt=tgt.transpose(0, 1), + memory=memory.transpose(0, 1), + memory_key_padding_mask=mask_flatten, + pos=lvl_pos_embed_flatten.transpose(0, 1), + refpoints_unsigmoid=refpoint_embed.transpose(0, 1), + level_start_index=level_start_index, + spatial_shapes=spatial_shapes, + valid_ratios=valid_ratios, + tgt_mask=attn_mask, + memory_text=text_dict["encoded_text"], + text_attention_mask=~text_dict["text_token_mask"], + # we ~ the mask . False means use the token; True means pad the token + ) + ######################################################### + # End Decoder + # hs: n_dec, bs, nq, d_model + # references: n_dec+1, bs, nq, query_dim + ######################################################### + + ######################################################### + # Begin postprocess + ######################################################### + if self.two_stage_type == "standard": + hs_enc = tgt_undetach.unsqueeze(0) + ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0) + else: + hs_enc = ref_enc = None + ######################################################### + # End postprocess + # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None + # ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None + ######################################################### + + return hs, references, hs_enc, ref_enc, init_box_proposal + # hs: (n_dec, bs, nq, d_model) + # references: sigmoid coordinates. (n_dec+1, bs, bq, 4) + # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None + # ref_enc: sigmoid coordinates. \ + # (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None + + +class TransformerEncoder(nn.Module): + def __init__( + self, + encoder_layer, + num_layers, + d_model=256, + num_queries=300, + enc_layer_share=False, + text_enhance_layer=None, + feature_fusion_layer=None, + use_checkpoint=False, + use_transformer_ckpt=False, + ): + """_summary_ + + Args: + encoder_layer (_type_): _description_ + num_layers (_type_): _description_ + norm (_type_, optional): _description_. Defaults to None. + d_model (int, optional): _description_. Defaults to 256. + num_queries (int, optional): _description_. Defaults to 300. + enc_layer_share (bool, optional): _description_. Defaults to False. + + """ + super().__init__() + # prepare layers + self.layers = [] + self.text_layers = [] + self.fusion_layers = [] + if num_layers > 0: + self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share) + + if text_enhance_layer is not None: + self.text_layers = _get_clones( + text_enhance_layer, num_layers, layer_share=enc_layer_share + ) + if feature_fusion_layer is not None: + self.fusion_layers = _get_clones( + feature_fusion_layer, num_layers, layer_share=enc_layer_share + ) + else: + self.layers = [] + del encoder_layer + + if text_enhance_layer is not None: + self.text_layers = [] + del text_enhance_layer + if feature_fusion_layer is not None: + self.fusion_layers = [] + del feature_fusion_layer + + self.query_scale = None + self.num_queries = num_queries + self.num_layers = num_layers + self.d_model = d_model + + self.use_checkpoint = use_checkpoint + self.use_transformer_ckpt = use_transformer_ckpt + + @staticmethod + def get_reference_points(spatial_shapes, valid_ratios, device): + reference_points_list = [] + for lvl, (H_, W_) in enumerate(spatial_shapes): + + ref_y, ref_x = torch.meshgrid( + torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), + torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device), + ) + ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) + ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) + ref = torch.stack((ref_x, ref_y), -1) + reference_points_list.append(ref) + reference_points = torch.cat(reference_points_list, 1) + reference_points = reference_points[:, :, None] * valid_ratios[:, None] + return reference_points + + def forward( + self, + # for images + src: Tensor, + pos: Tensor, + spatial_shapes: Tensor, + level_start_index: Tensor, + valid_ratios: Tensor, + key_padding_mask: Tensor, + # for texts + memory_text: Tensor = None, + text_attention_mask: Tensor = None, + pos_text: Tensor = None, + text_self_attention_masks: Tensor = None, + position_ids: Tensor = None, + ): + """ + Input: + - src: [bs, sum(hi*wi), 256] + - pos: pos embed for src. [bs, sum(hi*wi), 256] + - spatial_shapes: h,w of each level [num_level, 2] + - level_start_index: [num_level] start point of level in sum(hi*wi). + - valid_ratios: [bs, num_level, 2] + - key_padding_mask: [bs, sum(hi*wi)] + + - memory_text: bs, n_text, 256 + - text_attention_mask: bs, n_text + False for no padding; True for padding + - pos_text: bs, n_text, 256 + + - position_ids: bs, n_text + Intermedia: + - reference_points: [bs, sum(hi*wi), num_level, 2] + Outpus: + - output: [bs, sum(hi*wi), 256] + """ + + output = src + + # preparation and reshape + if self.num_layers > 0: + reference_points = self.get_reference_points( + spatial_shapes, valid_ratios, device=src.device + ) + + if self.text_layers: + # generate pos_text + bs, n_text, text_dim = memory_text.shape + if pos_text is None and position_ids is None: + pos_text = ( + torch.arange(n_text, device=memory_text.device) + .float() + .unsqueeze(0) + .unsqueeze(-1) + .repeat(bs, 1, 1) + ) + pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False) + if position_ids is not None: + pos_text = get_sine_pos_embed( + position_ids[..., None], num_pos_feats=256, exchange_xy=False + ) + + # main process + for layer_id, layer in enumerate(self.layers): + # if output.isnan().any() or memory_text.isnan().any(): + # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': + # import ipdb; ipdb.set_trace() + if self.fusion_layers: + if self.use_checkpoint: + output, memory_text = checkpoint.checkpoint( + self.fusion_layers[layer_id], + output, + memory_text, + key_padding_mask, + text_attention_mask, + ) + else: + output, memory_text = self.fusion_layers[layer_id]( + v=output, + l=memory_text, + attention_mask_v=key_padding_mask, + attention_mask_l=text_attention_mask, + ) + + if self.text_layers: + memory_text = self.text_layers[layer_id]( + src=memory_text.transpose(0, 1), + src_mask=~text_self_attention_masks, # note we use ~ for mask here + src_key_padding_mask=text_attention_mask, + pos=(pos_text.transpose(0, 1) if pos_text is not None else None), + ).transpose(0, 1) + + # main process + if self.use_transformer_ckpt: + output = checkpoint.checkpoint( + layer, + output, + pos, + reference_points, + spatial_shapes, + level_start_index, + key_padding_mask, + ) + else: + output = layer( + src=output, + pos=pos, + reference_points=reference_points, + spatial_shapes=spatial_shapes, + level_start_index=level_start_index, + key_padding_mask=key_padding_mask, + ) + + return output, memory_text + + +class TransformerDecoder(nn.Module): + def __init__( + self, + decoder_layer, + num_layers, + norm=None, + return_intermediate=False, + d_model=256, + query_dim=4, + num_feature_levels=1, + ): + super().__init__() + if num_layers > 0: + self.layers = _get_clones(decoder_layer, num_layers) + else: + self.layers = [] + self.num_layers = num_layers + self.norm = norm + self.return_intermediate = return_intermediate + assert return_intermediate, "support return_intermediate only" + self.query_dim = query_dim + assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim) + self.num_feature_levels = num_feature_levels + + self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2) + self.query_pos_sine_scale = None + + self.query_scale = None + self.bbox_embed = None + self.class_embed = None + + self.d_model = d_model + + self.ref_anchor_head = None + + def forward( + self, + tgt, + memory, + tgt_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + memory_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2 + # for memory + level_start_index: Optional[Tensor] = None, # num_levels + spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 + valid_ratios: Optional[Tensor] = None, + # for text + memory_text: Optional[Tensor] = None, + text_attention_mask: Optional[Tensor] = None, + ): + """ + Input: + - tgt: nq, bs, d_model + - memory: hw, bs, d_model + - pos: hw, bs, d_model + - refpoints_unsigmoid: nq, bs, 2/4 + - valid_ratios/spatial_shapes: bs, nlevel, 2 + """ + output = tgt + + intermediate = [] + reference_points = refpoints_unsigmoid.sigmoid() + ref_points = [reference_points] + + for layer_id, layer in enumerate(self.layers): + + if reference_points.shape[-1] == 4: + reference_points_input = ( + reference_points[:, :, None] + * torch.cat([valid_ratios, valid_ratios], -1)[None, :] + ) # nq, bs, nlevel, 4 + else: + assert reference_points.shape[-1] == 2 + reference_points_input = reference_points[:, :, None] * valid_ratios[None, :] + query_sine_embed = gen_sineembed_for_position( + reference_points_input[:, :, 0, :] + ) # nq, bs, 256*2 + + # conditional query + raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256 + pos_scale = self.query_scale(output) if self.query_scale is not None else 1 + query_pos = pos_scale * raw_query_pos + # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1': + # if query_pos.isnan().any() | query_pos.isinf().any(): + # import ipdb; ipdb.set_trace() + + # main process + output = layer( + tgt=output, + tgt_query_pos=query_pos, + tgt_query_sine_embed=query_sine_embed, + tgt_key_padding_mask=tgt_key_padding_mask, + tgt_reference_points=reference_points_input, + memory_text=memory_text, + text_attention_mask=text_attention_mask, + memory=memory, + memory_key_padding_mask=memory_key_padding_mask, + memory_level_start_index=level_start_index, + memory_spatial_shapes=spatial_shapes, + memory_pos=pos, + self_attn_mask=tgt_mask, + cross_attn_mask=memory_mask, + ) + if output.isnan().any() | output.isinf().any(): + print(f"output layer_id {layer_id} is nan") + try: + num_nan = output.isnan().sum().item() + num_inf = output.isinf().sum().item() + print(f"num_nan {num_nan}, num_inf {num_inf}") + except Exception as e: + print(e) + # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1': + # import ipdb; ipdb.set_trace() + + # iter update + if self.bbox_embed is not None: + # box_holder = self.bbox_embed(output) + # box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points) + # new_reference_points = box_holder[..., :self.query_dim].sigmoid() + + reference_before_sigmoid = inverse_sigmoid(reference_points) + delta_unsig = self.bbox_embed[layer_id](output) + outputs_unsig = delta_unsig + reference_before_sigmoid + new_reference_points = outputs_unsig.sigmoid() + + reference_points = new_reference_points.detach() + # if layer_id != self.num_layers - 1: + ref_points.append(new_reference_points) + + intermediate.append(self.norm(output)) + + return [ + [itm_out.transpose(0, 1) for itm_out in intermediate], + [itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points], + ] + + +class DeformableTransformerEncoderLayer(nn.Module): + def __init__( + self, + d_model=256, + d_ffn=1024, + dropout=0.1, + activation="relu", + n_levels=4, + n_heads=8, + n_points=4, + ): + super().__init__() + + # self attention + self.self_attn = MSDeformAttn( + embed_dim=d_model, + num_levels=n_levels, + num_heads=n_heads, + num_points=n_points, + batch_first=True, + ) + self.dropout1 = nn.Dropout(dropout) + self.norm1 = nn.LayerNorm(d_model) + + # ffn + self.linear1 = nn.Linear(d_model, d_ffn) + self.activation = _get_activation_fn(activation, d_model=d_ffn) + self.dropout2 = nn.Dropout(dropout) + self.linear2 = nn.Linear(d_ffn, d_model) + self.dropout3 = nn.Dropout(dropout) + self.norm2 = nn.LayerNorm(d_model) + + @staticmethod + def with_pos_embed(tensor, pos): + return tensor if pos is None else tensor + pos + + def forward_ffn(self, src): + src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) + src = src + self.dropout3(src2) + src = self.norm2(src) + return src + + def forward( + self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None + ): + # self attention + # import ipdb; ipdb.set_trace() + src2 = self.self_attn( + query=self.with_pos_embed(src, pos), + reference_points=reference_points, + value=src, + spatial_shapes=spatial_shapes, + level_start_index=level_start_index, + key_padding_mask=key_padding_mask, + ) + src = src + self.dropout1(src2) + src = self.norm1(src) + + # ffn + src = self.forward_ffn(src) + + return src + + +class DeformableTransformerDecoderLayer(nn.Module): + def __init__( + self, + d_model=256, + d_ffn=1024, + dropout=0.1, + activation="relu", + n_levels=4, + n_heads=8, + n_points=4, + use_text_feat_guide=False, + use_text_cross_attention=False, + ): + super().__init__() + + # cross attention + self.cross_attn = MSDeformAttn( + embed_dim=d_model, + num_levels=n_levels, + num_heads=n_heads, + num_points=n_points, + batch_first=True, + ) + self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() + self.norm1 = nn.LayerNorm(d_model) + + # cross attention text + if use_text_cross_attention: + self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) + self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity() + self.catext_norm = nn.LayerNorm(d_model) + + # self attention + self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) + self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() + self.norm2 = nn.LayerNorm(d_model) + + # ffn + self.linear1 = nn.Linear(d_model, d_ffn) + self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1) + self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() + self.linear2 = nn.Linear(d_ffn, d_model) + self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity() + self.norm3 = nn.LayerNorm(d_model) + + self.key_aware_proj = None + self.use_text_feat_guide = use_text_feat_guide + assert not use_text_feat_guide + self.use_text_cross_attention = use_text_cross_attention + + def rm_self_attn_modules(self): + self.self_attn = None + self.dropout2 = None + self.norm2 = None + + @staticmethod + def with_pos_embed(tensor, pos): + return tensor if pos is None else tensor + pos + + def forward_ffn(self, tgt): + with torch.cuda.amp.autocast(enabled=False): + tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) + tgt = tgt + self.dropout4(tgt2) + tgt = self.norm3(tgt) + return tgt + + def forward( + self, + # for tgt + tgt: Optional[Tensor], # nq, bs, d_model + tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos)) + tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos) + tgt_key_padding_mask: Optional[Tensor] = None, + tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4 + memory_text: Optional[Tensor] = None, # bs, num_token, d_model + text_attention_mask: Optional[Tensor] = None, # bs, num_token + # for memory + memory: Optional[Tensor] = None, # hw, bs, d_model + memory_key_padding_mask: Optional[Tensor] = None, + memory_level_start_index: Optional[Tensor] = None, # num_levels + memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2 + memory_pos: Optional[Tensor] = None, # pos for memory + # sa + self_attn_mask: Optional[Tensor] = None, # mask used for self-attention + cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention + ): + """ + Input: + - tgt/tgt_query_pos: nq, bs, d_model + - + """ + assert cross_attn_mask is None + + # self attention + if self.self_attn is not None: + # import ipdb; ipdb.set_trace() + q = k = self.with_pos_embed(tgt, tgt_query_pos) + tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0] + tgt = tgt + self.dropout2(tgt2) + tgt = self.norm2(tgt) + + if self.use_text_cross_attention: + tgt2 = self.ca_text( + self.with_pos_embed(tgt, tgt_query_pos), + memory_text.transpose(0, 1), + memory_text.transpose(0, 1), + key_padding_mask=text_attention_mask, + )[0] + tgt = tgt + self.catext_dropout(tgt2) + tgt = self.catext_norm(tgt) + + tgt2 = self.cross_attn( + query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1), + reference_points=tgt_reference_points.transpose(0, 1).contiguous(), + value=memory.transpose(0, 1), + spatial_shapes=memory_spatial_shapes, + level_start_index=memory_level_start_index, + key_padding_mask=memory_key_padding_mask, + ).transpose(0, 1) + tgt = tgt + self.dropout1(tgt2) + tgt = self.norm1(tgt) + + # ffn + tgt = self.forward_ffn(tgt) + + return tgt + + +def build_transformer(args): + return Transformer( + d_model=args.hidden_dim, + dropout=args.dropout, + nhead=args.nheads, + num_queries=args.num_queries, + dim_feedforward=args.dim_feedforward, + num_encoder_layers=args.enc_layers, + num_decoder_layers=args.dec_layers, + normalize_before=args.pre_norm, + return_intermediate_dec=True, + query_dim=args.query_dim, + activation=args.transformer_activation, + num_patterns=args.num_patterns, + num_feature_levels=args.num_feature_levels, + enc_n_points=args.enc_n_points, + dec_n_points=args.dec_n_points, + learnable_tgt_init=True, + # two stage + two_stage_type=args.two_stage_type, # ['no', 'standard', 'early'] + embed_init_tgt=args.embed_init_tgt, + use_text_enhancer=args.use_text_enhancer, + use_fusion_layer=args.use_fusion_layer, + use_checkpoint=args.use_checkpoint, + use_transformer_ckpt=args.use_transformer_ckpt, + use_text_cross_attention=args.use_text_cross_attention, + text_dropout=args.text_dropout, + fusion_dropout=args.fusion_dropout, + fusion_droppath=args.fusion_droppath, + ) diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/transformer_vanilla.py b/GroundingDINO/groundingdino/models/GroundingDINO/transformer_vanilla.py new file mode 100644 index 0000000000000000000000000000000000000000..10c0920c1a217af5bb3e1b13077568035ab3b7b5 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/transformer_vanilla.py @@ -0,0 +1,123 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +""" +DETR Transformer class. + +Copy-paste from torch.nn.Transformer with modifications: + * positional encodings are passed in MHattention + * extra LN at the end of encoder is removed + * decoder returns a stack of activations from all decoding layers +""" +from typing import Optional + +import torch +import torch.nn.functional as F +from torch import Tensor, nn + +from .utils import ( + MLP, + _get_activation_fn, + _get_clones, + gen_encoder_output_proposals, + gen_sineembed_for_position, + sigmoid_focal_loss, +) + + +class TextTransformer(nn.Module): + def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1): + super().__init__() + self.num_layers = num_layers + self.d_model = d_model + self.nheads = nheads + self.dim_feedforward = dim_feedforward + self.norm = None + + single_encoder_layer = TransformerEncoderLayer( + d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout + ) + self.layers = _get_clones(single_encoder_layer, num_layers) + + def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor): + """ + + Args: + text_attention_mask: bs, num_token + memory_text: bs, num_token, d_model + + Raises: + RuntimeError: _description_ + + Returns: + output: bs, num_token, d_model + """ + + output = memory_text.transpose(0, 1) + + for layer in self.layers: + output = layer(output, src_key_padding_mask=text_attention_mask) + + if self.norm is not None: + output = self.norm(output) + + return output.transpose(0, 1) + + +class TransformerEncoderLayer(nn.Module): + def __init__( + self, + d_model, + nhead, + dim_feedforward=2048, + dropout=0.1, + activation="relu", + normalize_before=False, + ): + super().__init__() + self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_feedforward, d_model) + + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + + self.activation = _get_activation_fn(activation) + self.normalize_before = normalize_before + self.nhead = nhead + + def with_pos_embed(self, tensor, pos: Optional[Tensor]): + return tensor if pos is None else tensor + pos + + def forward( + self, + src, + src_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + ): + # repeat attn mask + if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]: + # bs, num_q, num_k + src_mask = src_mask.repeat(self.nhead, 1, 1) + + q = k = self.with_pos_embed(src, pos) + + src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0] + + # src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] + src = src + self.dropout1(src2) + src = self.norm1(src) + src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) + src = src + self.dropout2(src2) + src = self.norm2(src) + return src diff --git a/GroundingDINO/groundingdino/models/GroundingDINO/utils.py b/GroundingDINO/groundingdino/models/GroundingDINO/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..5bd18f70225e12b2e27fdb4eabcde91d959f8e31 --- /dev/null +++ b/GroundingDINO/groundingdino/models/GroundingDINO/utils.py @@ -0,0 +1,268 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ + +import copy +import math + +import torch +import torch.nn.functional as F +from torch import Tensor, nn + + +def _get_clones(module, N, layer_share=False): + # import ipdb; ipdb.set_trace() + if layer_share: + return nn.ModuleList([module for i in range(N)]) + else: + return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) + + +def get_sine_pos_embed( + pos_tensor: torch.Tensor, + num_pos_feats: int = 128, + temperature: int = 10000, + exchange_xy: bool = True, +): + """generate sine position embedding from a position tensor + Args: + pos_tensor (torch.Tensor): shape: [..., n]. + num_pos_feats (int): projected shape for each float in the tensor. + temperature (int): temperature in the sine/cosine function. + exchange_xy (bool, optional): exchange pos x and pos y. \ + For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True. + Returns: + pos_embed (torch.Tensor): shape: [..., n*num_pos_feats]. + """ + scale = 2 * math.pi + dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device) + dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats) + + def sine_func(x: torch.Tensor): + sin_x = x * scale / dim_t + sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2) + return sin_x + + pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)] + if exchange_xy: + pos_res[0], pos_res[1] = pos_res[1], pos_res[0] + pos_res = torch.cat(pos_res, dim=-1) + return pos_res + + +def gen_encoder_output_proposals( + memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None +): + """ + Input: + - memory: bs, \sum{hw}, d_model + - memory_padding_mask: bs, \sum{hw} + - spatial_shapes: nlevel, 2 + - learnedwh: 2 + Output: + - output_memory: bs, \sum{hw}, d_model + - output_proposals: bs, \sum{hw}, 4 + """ + N_, S_, C_ = memory.shape + proposals = [] + _cur = 0 + for lvl, (H_, W_) in enumerate(spatial_shapes): + mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1) + valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) + valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) + + # import ipdb; ipdb.set_trace() + + grid_y, grid_x = torch.meshgrid( + torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), + torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device), + ) + grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2 + + scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) + grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale + + if learnedwh is not None: + # import ipdb; ipdb.set_trace() + wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl) + else: + wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) + + # scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1) + # grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale + # wh = torch.ones_like(grid) / scale + proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) + proposals.append(proposal) + _cur += H_ * W_ + # import ipdb; ipdb.set_trace() + output_proposals = torch.cat(proposals, 1) + output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all( + -1, keepdim=True + ) + output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid + output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf")) + output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf")) + + output_memory = memory + output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) + output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) + + # output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) + # output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf')) + + return output_memory, output_proposals + + +class RandomBoxPerturber: + def __init__( + self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2 + ) -> None: + self.noise_scale = torch.Tensor( + [x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale] + ) + + def __call__(self, refanchors: Tensor) -> Tensor: + nq, bs, query_dim = refanchors.shape + device = refanchors.device + + noise_raw = torch.rand_like(refanchors) + noise_scale = self.noise_scale.to(device)[:query_dim] + + new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale) + return new_refanchors.clamp_(0, 1) + + +def sigmoid_focal_loss( + inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False +): + """ + Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs + (0 for the negative class and 1 for the positive class). + alpha: (optional) Weighting factor in range (0,1) to balance + positive vs negative examples. Default = -1 (no weighting). + gamma: Exponent of the modulating factor (1 - p_t) to + balance easy vs hard examples. + Returns: + Loss tensor + """ + prob = inputs.sigmoid() + ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") + p_t = prob * targets + (1 - prob) * (1 - targets) + loss = ce_loss * ((1 - p_t) ** gamma) + + if alpha >= 0: + alpha_t = alpha * targets + (1 - alpha) * (1 - targets) + loss = alpha_t * loss + + if no_reduction: + return loss + + return loss.mean(1).sum() / num_boxes + + +class MLP(nn.Module): + """Very simple multi-layer perceptron (also called FFN)""" + + def __init__(self, input_dim, hidden_dim, output_dim, num_layers): + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + return x + + +def _get_activation_fn(activation, d_model=256, batch_dim=0): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + if activation == "prelu": + return nn.PReLU() + if activation == "selu": + return F.selu + + raise RuntimeError(f"activation should be relu/gelu, not {activation}.") + + +def gen_sineembed_for_position(pos_tensor): + # n_query, bs, _ = pos_tensor.size() + # sineembed_tensor = torch.zeros(n_query, bs, 256) + scale = 2 * math.pi + dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) + dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128) + x_embed = pos_tensor[:, :, 0] * scale + y_embed = pos_tensor[:, :, 1] * scale + pos_x = x_embed[:, :, None] / dim_t + pos_y = y_embed[:, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) + pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) + if pos_tensor.size(-1) == 2: + pos = torch.cat((pos_y, pos_x), dim=2) + elif pos_tensor.size(-1) == 4: + w_embed = pos_tensor[:, :, 2] * scale + pos_w = w_embed[:, :, None] / dim_t + pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) + + h_embed = pos_tensor[:, :, 3] * scale + pos_h = h_embed[:, :, None] / dim_t + pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) + + pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) + else: + raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) + return pos + + +class ContrastiveEmbed(nn.Module): + def __init__(self, max_text_len=256): + """ + Args: + max_text_len: max length of text. + """ + super().__init__() + self.max_text_len = max_text_len + + def forward(self, x, text_dict): + """_summary_ + + Args: + x (_type_): _description_ + text_dict (_type_): _description_ + { + 'encoded_text': encoded_text, # bs, 195, d_model + 'text_token_mask': text_token_mask, # bs, 195 + # True for used tokens. False for padding tokens + } + Returns: + _type_: _description_ + """ + assert isinstance(text_dict, dict) + + y = text_dict["encoded_text"] + text_token_mask = text_dict["text_token_mask"] + + res = x @ y.transpose(-1, -2) + res.masked_fill_(~text_token_mask[:, None, :], float("-inf")) + + # padding to max_text_len + new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device) + new_res[..., : res.shape[-1]] = res + + return new_res diff --git a/GroundingDINO/groundingdino/models/__init__.py b/GroundingDINO/groundingdino/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e3413961d1d184b99835eb1e919b052d70298bc6 --- /dev/null +++ b/GroundingDINO/groundingdino/models/__init__.py @@ -0,0 +1,18 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +from .GroundingDINO import build_groundingdino + + +def build_model(args): + # we use register to maintain models from catdet6 on. + from .registry import MODULE_BUILD_FUNCS + + assert args.modelname in MODULE_BUILD_FUNCS._module_dict + build_func = MODULE_BUILD_FUNCS.get(args.modelname) + model = build_func(args) + return model diff --git a/GroundingDINO/groundingdino/models/registry.py b/GroundingDINO/groundingdino/models/registry.py new file mode 100644 index 0000000000000000000000000000000000000000..2d22a59eec79a2a19b83fa1779f2adaf5753aec6 --- /dev/null +++ b/GroundingDINO/groundingdino/models/registry.py @@ -0,0 +1,66 @@ +# ------------------------------------------------------------------------ +# Grounding DINO +# url: https://github.com/IDEA-Research/GroundingDINO +# Copyright (c) 2023 IDEA. All Rights Reserved. +# Licensed under the Apache License, Version 2.0 [see LICENSE for details] +# ------------------------------------------------------------------------ +# -*- coding: utf-8 -*- +# @Author: Yihao Chen +# @Date: 2021-08-16 16:03:17 +# @Last Modified by: Shilong Liu +# @Last Modified time: 2022-01-23 15:26 +# modified from mmcv + +import inspect +from functools import partial + + +class Registry(object): + def __init__(self, name): + self._name = name + self._module_dict = dict() + + def __repr__(self): + format_str = self.__class__.__name__ + "(name={}, items={})".format( + self._name, list(self._module_dict.keys()) + ) + return format_str + + def __len__(self): + return len(self._module_dict) + + @property + def name(self): + return self._name + + @property + def module_dict(self): + return self._module_dict + + def get(self, key): + return self._module_dict.get(key, None) + + def registe_with_name(self, module_name=None, force=False): + return partial(self.register, module_name=module_name, force=force) + + def register(self, module_build_function, module_name=None, force=False): + """Register a module build function. + Args: + module (:obj:`nn.Module`): Module to be registered. + """ + if not inspect.isfunction(module_build_function): + raise TypeError( + "module_build_function must be a function, but got {}".format( + type(module_build_function) + ) + ) + if module_name is None: + module_name = module_build_function.__name__ + if not force and module_name in self._module_dict: + raise KeyError("{} is already registered in {}".format(module_name, self.name)) + self._module_dict[module_name] = module_build_function + + return module_build_function + + +MODULE_BUILD_FUNCS = Registry("model build functions") diff --git a/GroundingDINO/groundingdino/util/__init__.py b/GroundingDINO/groundingdino/util/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..168f9979a4623806934b0ff1102ac166704e7dec --- /dev/null +++ b/GroundingDINO/groundingdino/util/__init__.py @@ -0,0 +1 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved diff --git a/GroundingDINO/groundingdino/util/box_ops.py b/GroundingDINO/groundingdino/util/box_ops.py new file mode 100644 index 0000000000000000000000000000000000000000..781068d294e576954edb4bd07b6e0f30e4e1bcd9 --- /dev/null +++ b/GroundingDINO/groundingdino/util/box_ops.py @@ -0,0 +1,140 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +""" +Utilities for bounding box manipulation and GIoU. +""" +import torch +from torchvision.ops.boxes import box_area + + +def box_cxcywh_to_xyxy(x): + x_c, y_c, w, h = x.unbind(-1) + b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] + return torch.stack(b, dim=-1) + + +def box_xyxy_to_cxcywh(x): + x0, y0, x1, y1 = x.unbind(-1) + b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] + return torch.stack(b, dim=-1) + + +# modified from torchvision to also return the union +def box_iou(boxes1, boxes2): + area1 = box_area(boxes1) + area2 = box_area(boxes2) + + # import ipdb; ipdb.set_trace() + lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] + rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] + + wh = (rb - lt).clamp(min=0) # [N,M,2] + inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] + + union = area1[:, None] + area2 - inter + + iou = inter / (union + 1e-6) + return iou, union + + +def generalized_box_iou(boxes1, boxes2): + """ + Generalized IoU from https://giou.stanford.edu/ + + The boxes should be in [x0, y0, x1, y1] format + + Returns a [N, M] pairwise matrix, where N = len(boxes1) + and M = len(boxes2) + """ + # degenerate boxes gives inf / nan results + # so do an early check + assert (boxes1[:, 2:] >= boxes1[:, :2]).all() + assert (boxes2[:, 2:] >= boxes2[:, :2]).all() + # except: + # import ipdb; ipdb.set_trace() + iou, union = box_iou(boxes1, boxes2) + + lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) + rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) + + wh = (rb - lt).clamp(min=0) # [N,M,2] + area = wh[:, :, 0] * wh[:, :, 1] + + return iou - (area - union) / (area + 1e-6) + + +# modified from torchvision to also return the union +def box_iou_pairwise(boxes1, boxes2): + area1 = box_area(boxes1) + area2 = box_area(boxes2) + + lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2] + rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2] + + wh = (rb - lt).clamp(min=0) # [N,2] + inter = wh[:, 0] * wh[:, 1] # [N] + + union = area1 + area2 - inter + + iou = inter / union + return iou, union + + +def generalized_box_iou_pairwise(boxes1, boxes2): + """ + Generalized IoU from https://giou.stanford.edu/ + + Input: + - boxes1, boxes2: N,4 + Output: + - giou: N, 4 + """ + # degenerate boxes gives inf / nan results + # so do an early check + assert (boxes1[:, 2:] >= boxes1[:, :2]).all() + assert (boxes2[:, 2:] >= boxes2[:, :2]).all() + assert boxes1.shape == boxes2.shape + iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4 + + lt = torch.min(boxes1[:, :2], boxes2[:, :2]) + rb = torch.max(boxes1[:, 2:], boxes2[:, 2:]) + + wh = (rb - lt).clamp(min=0) # [N,2] + area = wh[:, 0] * wh[:, 1] + + return iou - (area - union) / area + + +def masks_to_boxes(masks): + """Compute the bounding boxes around the provided masks + + The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. + + Returns a [N, 4] tensors, with the boxes in xyxy format + """ + if masks.numel() == 0: + return torch.zeros((0, 4), device=masks.device) + + h, w = masks.shape[-2:] + + y = torch.arange(0, h, dtype=torch.float) + x = torch.arange(0, w, dtype=torch.float) + y, x = torch.meshgrid(y, x) + + x_mask = masks * x.unsqueeze(0) + x_max = x_mask.flatten(1).max(-1)[0] + x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] + + y_mask = masks * y.unsqueeze(0) + y_max = y_mask.flatten(1).max(-1)[0] + y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] + + return torch.stack([x_min, y_min, x_max, y_max], 1) + + +if __name__ == "__main__": + x = torch.rand(5, 4) + y = torch.rand(3, 4) + iou, union = box_iou(x, y) + import ipdb + + ipdb.set_trace() diff --git a/GroundingDINO/groundingdino/util/get_tokenlizer.py b/GroundingDINO/groundingdino/util/get_tokenlizer.py new file mode 100644 index 0000000000000000000000000000000000000000..f7dcf7e95f03f95b20546b26442a94225924618b --- /dev/null +++ b/GroundingDINO/groundingdino/util/get_tokenlizer.py @@ -0,0 +1,26 @@ +from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast + + +def get_tokenlizer(text_encoder_type): + if not isinstance(text_encoder_type, str): + # print("text_encoder_type is not a str") + if hasattr(text_encoder_type, "text_encoder_type"): + text_encoder_type = text_encoder_type.text_encoder_type + elif text_encoder_type.get("text_encoder_type", False): + text_encoder_type = text_encoder_type.get("text_encoder_type") + else: + raise ValueError( + "Unknown type of text_encoder_type: {}".format(type(text_encoder_type)) + ) + print("final text_encoder_type: {}".format(text_encoder_type)) + + tokenizer = AutoTokenizer.from_pretrained(text_encoder_type) + return tokenizer + + +def get_pretrained_language_model(text_encoder_type): + if text_encoder_type == "bert-base-uncased": + return BertModel.from_pretrained(text_encoder_type) + if text_encoder_type == "roberta-base": + return RobertaModel.from_pretrained(text_encoder_type) + raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type)) diff --git a/GroundingDINO/groundingdino/util/inference.py b/GroundingDINO/groundingdino/util/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..8168b96ca51e6e494c7c675c2f4a610e21b095d6 --- /dev/null +++ b/GroundingDINO/groundingdino/util/inference.py @@ -0,0 +1,98 @@ +from typing import Tuple, List + +import cv2 +import numpy as np +import supervision as sv +import torch +from PIL import Image +from torchvision.ops import box_convert + +import groundingdino.datasets.transforms as T +from groundingdino.models import build_model +from groundingdino.util.misc import clean_state_dict +from groundingdino.util.slconfig import SLConfig +from groundingdino.util.utils import get_phrases_from_posmap + + +def preprocess_caption(caption: str) -> str: + result = caption.lower().strip() + if result.endswith("."): + return result + return result + "." + + +def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"): + args = SLConfig.fromfile(model_config_path) + args.device = device + model = build_model(args) + checkpoint = torch.load(model_checkpoint_path, map_location="cpu") + model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) + model.eval() + return model + + +def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: + transform = T.Compose( + [ + T.RandomResize([800], max_size=1333), + T.ToTensor(), + T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), + ] + ) + image_source = Image.open(image_path).convert("RGB") + image = np.asarray(image_source) + image_transformed, _ = transform(image_source, None) + return image, image_transformed + + +def predict( + model, + image: torch.Tensor, + caption: str, + box_threshold: float, + text_threshold: float, + device: str = "cuda" +) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: + caption = preprocess_caption(caption=caption) + + model = model.to(device) + image = image.to(device) + + with torch.no_grad(): + outputs = model(image[None], captions=[caption]) + + prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256) + prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4) + + mask = prediction_logits.max(dim=1)[0] > box_threshold + logits = prediction_logits[mask] # logits.shape = (n, 256) + boxes = prediction_boxes[mask] # boxes.shape = (n, 4) + + tokenizer = model.tokenizer + tokenized = tokenizer(caption) + + phrases = [ + get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '') + for logit + in logits + ] + + return boxes, logits.max(dim=1)[0], phrases + + +def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray: + h, w, _ = image_source.shape + boxes = boxes * torch.Tensor([w, h, w, h]) + xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() + detections = sv.Detections(xyxy=xyxy) + + labels = [ + f"{phrase} {logit:.2f}" + for phrase, logit + in zip(phrases, logits) + ] + + box_annotator = sv.BoxAnnotator() + annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR) + annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels) + return annotated_frame diff --git a/GroundingDINO/groundingdino/util/logger.py b/GroundingDINO/groundingdino/util/logger.py new file mode 100644 index 0000000000000000000000000000000000000000..18145f54c927abd59b95f3fa6e6da8002bc2ce97 --- /dev/null +++ b/GroundingDINO/groundingdino/util/logger.py @@ -0,0 +1,93 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +import functools +import logging +import os +import sys + +from termcolor import colored + + +class _ColorfulFormatter(logging.Formatter): + def __init__(self, *args, **kwargs): + self._root_name = kwargs.pop("root_name") + "." + self._abbrev_name = kwargs.pop("abbrev_name", "") + if len(self._abbrev_name): + self._abbrev_name = self._abbrev_name + "." + super(_ColorfulFormatter, self).__init__(*args, **kwargs) + + def formatMessage(self, record): + record.name = record.name.replace(self._root_name, self._abbrev_name) + log = super(_ColorfulFormatter, self).formatMessage(record) + if record.levelno == logging.WARNING: + prefix = colored("WARNING", "red", attrs=["blink"]) + elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL: + prefix = colored("ERROR", "red", attrs=["blink", "underline"]) + else: + return log + return prefix + " " + log + + +# so that calling setup_logger multiple times won't add many handlers +@functools.lru_cache() +def setup_logger(output=None, distributed_rank=0, *, color=True, name="imagenet", abbrev_name=None): + """ + Initialize the detectron2 logger and set its verbosity level to "INFO". + + Args: + output (str): a file name or a directory to save log. If None, will not save log file. + If ends with ".txt" or ".log", assumed to be a file name. + Otherwise, logs will be saved to `output/log.txt`. + name (str): the root module name of this logger + + Returns: + logging.Logger: a logger + """ + logger = logging.getLogger(name) + logger.setLevel(logging.DEBUG) + logger.propagate = False + + if abbrev_name is None: + abbrev_name = name + + plain_formatter = logging.Formatter( + "[%(asctime)s.%(msecs)03d]: %(message)s", datefmt="%m/%d %H:%M:%S" + ) + # stdout logging: master only + if distributed_rank == 0: + ch = logging.StreamHandler(stream=sys.stdout) + ch.setLevel(logging.DEBUG) + if color: + formatter = _ColorfulFormatter( + colored("[%(asctime)s.%(msecs)03d]: ", "green") + "%(message)s", + datefmt="%m/%d %H:%M:%S", + root_name=name, + abbrev_name=str(abbrev_name), + ) + else: + formatter = plain_formatter + ch.setFormatter(formatter) + logger.addHandler(ch) + + # file logging: all workers + if output is not None: + if output.endswith(".txt") or output.endswith(".log"): + filename = output + else: + filename = os.path.join(output, "log.txt") + if distributed_rank > 0: + filename = filename + f".rank{distributed_rank}" + os.makedirs(os.path.dirname(filename), exist_ok=True) + + fh = logging.StreamHandler(_cached_log_stream(filename)) + fh.setLevel(logging.DEBUG) + fh.setFormatter(plain_formatter) + logger.addHandler(fh) + + return logger + + +# cache the opened file object, so that different calls to `setup_logger` +# with the same file name can safely write to the same file. +@functools.lru_cache(maxsize=None) +def _cached_log_stream(filename): + return open(filename, "a") diff --git a/GroundingDINO/groundingdino/util/misc.py b/GroundingDINO/groundingdino/util/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..d64b84ef24bea0c98e76824feb1903f6bfebe7a5 --- /dev/null +++ b/GroundingDINO/groundingdino/util/misc.py @@ -0,0 +1,717 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +""" +Misc functions, including distributed helpers. + +Mostly copy-paste from torchvision references. +""" +import colorsys +import datetime +import functools +import io +import json +import os +import pickle +import subprocess +import time +from collections import OrderedDict, defaultdict, deque +from typing import List, Optional + +import numpy as np +import torch +import torch.distributed as dist + +# needed due to empty tensor bug in pytorch and torchvision 0.5 +import torchvision +from torch import Tensor + +__torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7 +if __torchvision_need_compat_flag: + from torchvision.ops import _new_empty_tensor + from torchvision.ops.misc import _output_size + + +class SmoothedValue(object): + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + if d.shape[0] == 0: + return 0 + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + if os.environ.get("SHILONG_AMP", None) == "1": + eps = 1e-4 + else: + eps = 1e-6 + return self.total / (self.count + eps) + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, + avg=self.avg, + global_avg=self.global_avg, + max=self.max, + value=self.value, + ) + + +@functools.lru_cache() +def _get_global_gloo_group(): + """ + Return a process group based on gloo backend, containing all the ranks + The result is cached. + """ + + if dist.get_backend() == "nccl": + return dist.new_group(backend="gloo") + + return dist.group.WORLD + + +def all_gather_cpu(data): + """ + Run all_gather on arbitrary picklable data (not necessarily tensors) + Args: + data: any picklable object + Returns: + list[data]: list of data gathered from each rank + """ + + world_size = get_world_size() + if world_size == 1: + return [data] + + cpu_group = _get_global_gloo_group() + + buffer = io.BytesIO() + torch.save(data, buffer) + data_view = buffer.getbuffer() + device = "cuda" if cpu_group is None else "cpu" + tensor = torch.ByteTensor(data_view).to(device) + + # obtain Tensor size of each rank + local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long) + size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)] + if cpu_group is None: + dist.all_gather(size_list, local_size) + else: + print("gathering on cpu") + dist.all_gather(size_list, local_size, group=cpu_group) + size_list = [int(size.item()) for size in size_list] + max_size = max(size_list) + assert isinstance(local_size.item(), int) + local_size = int(local_size.item()) + + # receiving Tensor from all ranks + # we pad the tensor because torch all_gather does not support + # gathering tensors of different shapes + tensor_list = [] + for _ in size_list: + tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) + if local_size != max_size: + padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device) + tensor = torch.cat((tensor, padding), dim=0) + if cpu_group is None: + dist.all_gather(tensor_list, tensor) + else: + dist.all_gather(tensor_list, tensor, group=cpu_group) + + data_list = [] + for size, tensor in zip(size_list, tensor_list): + tensor = torch.split(tensor, [size, max_size - size], dim=0)[0] + buffer = io.BytesIO(tensor.cpu().numpy()) + obj = torch.load(buffer) + data_list.append(obj) + + return data_list + + +def all_gather(data): + """ + Run all_gather on arbitrary picklable data (not necessarily tensors) + Args: + data: any picklable object + Returns: + list[data]: list of data gathered from each rank + """ + + if os.getenv("CPU_REDUCE") == "1": + return all_gather_cpu(data) + + world_size = get_world_size() + if world_size == 1: + return [data] + + # serialized to a Tensor + buffer = pickle.dumps(data) + storage = torch.ByteStorage.from_buffer(buffer) + tensor = torch.ByteTensor(storage).to("cuda") + + # obtain Tensor size of each rank + local_size = torch.tensor([tensor.numel()], device="cuda") + size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] + dist.all_gather(size_list, local_size) + size_list = [int(size.item()) for size in size_list] + max_size = max(size_list) + + # receiving Tensor from all ranks + # we pad the tensor because torch all_gather does not support + # gathering tensors of different shapes + tensor_list = [] + for _ in size_list: + tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) + if local_size != max_size: + padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") + tensor = torch.cat((tensor, padding), dim=0) + dist.all_gather(tensor_list, tensor) + + data_list = [] + for size, tensor in zip(size_list, tensor_list): + buffer = tensor.cpu().numpy().tobytes()[:size] + data_list.append(pickle.loads(buffer)) + + return data_list + + +def reduce_dict(input_dict, average=True): + """ + Args: + input_dict (dict): all the values will be reduced + average (bool): whether to do average or sum + Reduce the values in the dictionary from all processes so that all processes + have the averaged results. Returns a dict with the same fields as + input_dict, after reduction. + """ + world_size = get_world_size() + if world_size < 2: + return input_dict + with torch.no_grad(): + names = [] + values = [] + # sort the keys so that they are consistent across processes + for k in sorted(input_dict.keys()): + names.append(k) + values.append(input_dict[k]) + values = torch.stack(values, dim=0) + dist.all_reduce(values) + if average: + values /= world_size + reduced_dict = {k: v for k, v in zip(names, values)} + return reduced_dict + + +class MetricLogger(object): + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + # print(name, str(meter)) + # import ipdb;ipdb.set_trace() + if meter.count > 0: + loss_str.append("{}: {}".format(name, str(meter))) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None, logger=None): + if logger is None: + print_func = print + else: + print_func = logger.info + + i = 0 + if not header: + header = "" + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt="{avg:.4f}") + data_time = SmoothedValue(fmt="{avg:.4f}") + space_fmt = ":" + str(len(str(len(iterable)))) + "d" + if torch.cuda.is_available(): + log_msg = self.delimiter.join( + [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + "max mem: {memory:.0f}", + ] + ) + else: + log_msg = self.delimiter.join( + [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + ] + ) + MB = 1024.0 * 1024.0 + for obj in iterable: + data_time.update(time.time() - end) + yield obj + # import ipdb; ipdb.set_trace() + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len(iterable) - 1: + eta_seconds = iter_time.global_avg * (len(iterable) - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print_func( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + memory=torch.cuda.max_memory_allocated() / MB, + ) + ) + else: + print_func( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + ) + ) + i += 1 + end = time.time() + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print_func( + "{} Total time: {} ({:.4f} s / it)".format( + header, total_time_str, total_time / len(iterable) + ) + ) + + +def get_sha(): + cwd = os.path.dirname(os.path.abspath(__file__)) + + def _run(command): + return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() + + sha = "N/A" + diff = "clean" + branch = "N/A" + try: + sha = _run(["git", "rev-parse", "HEAD"]) + subprocess.check_output(["git", "diff"], cwd=cwd) + diff = _run(["git", "diff-index", "HEAD"]) + diff = "has uncommited changes" if diff else "clean" + branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) + except Exception: + pass + message = f"sha: {sha}, status: {diff}, branch: {branch}" + return message + + +def collate_fn(batch): + # import ipdb; ipdb.set_trace() + batch = list(zip(*batch)) + batch[0] = nested_tensor_from_tensor_list(batch[0]) + return tuple(batch) + + +def _max_by_axis(the_list): + # type: (List[List[int]]) -> List[int] + maxes = the_list[0] + for sublist in the_list[1:]: + for index, item in enumerate(sublist): + maxes[index] = max(maxes[index], item) + return maxes + + +class NestedTensor(object): + def __init__(self, tensors, mask: Optional[Tensor]): + self.tensors = tensors + self.mask = mask + if mask == "auto": + self.mask = torch.zeros_like(tensors).to(tensors.device) + if self.mask.dim() == 3: + self.mask = self.mask.sum(0).to(bool) + elif self.mask.dim() == 4: + self.mask = self.mask.sum(1).to(bool) + else: + raise ValueError( + "tensors dim must be 3 or 4 but {}({})".format( + self.tensors.dim(), self.tensors.shape + ) + ) + + def imgsize(self): + res = [] + for i in range(self.tensors.shape[0]): + mask = self.mask[i] + maxH = (~mask).sum(0).max() + maxW = (~mask).sum(1).max() + res.append(torch.Tensor([maxH, maxW])) + return res + + def to(self, device): + # type: (Device) -> NestedTensor # noqa + cast_tensor = self.tensors.to(device) + mask = self.mask + if mask is not None: + assert mask is not None + cast_mask = mask.to(device) + else: + cast_mask = None + return NestedTensor(cast_tensor, cast_mask) + + def to_img_list_single(self, tensor, mask): + assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim()) + maxH = (~mask).sum(0).max() + maxW = (~mask).sum(1).max() + img = tensor[:, :maxH, :maxW] + return img + + def to_img_list(self): + """remove the padding and convert to img list + + Returns: + [type]: [description] + """ + if self.tensors.dim() == 3: + return self.to_img_list_single(self.tensors, self.mask) + else: + res = [] + for i in range(self.tensors.shape[0]): + tensor_i = self.tensors[i] + mask_i = self.mask[i] + res.append(self.to_img_list_single(tensor_i, mask_i)) + return res + + @property + def device(self): + return self.tensors.device + + def decompose(self): + return self.tensors, self.mask + + def __repr__(self): + return str(self.tensors) + + @property + def shape(self): + return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape} + + +def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): + # TODO make this more general + if tensor_list[0].ndim == 3: + if torchvision._is_tracing(): + # nested_tensor_from_tensor_list() does not export well to ONNX + # call _onnx_nested_tensor_from_tensor_list() instead + return _onnx_nested_tensor_from_tensor_list(tensor_list) + + # TODO make it support different-sized images + max_size = _max_by_axis([list(img.shape) for img in tensor_list]) + # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) + batch_shape = [len(tensor_list)] + max_size + b, c, h, w = batch_shape + dtype = tensor_list[0].dtype + device = tensor_list[0].device + tensor = torch.zeros(batch_shape, dtype=dtype, device=device) + mask = torch.ones((b, h, w), dtype=torch.bool, device=device) + for img, pad_img, m in zip(tensor_list, tensor, mask): + pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + m[: img.shape[1], : img.shape[2]] = False + else: + raise ValueError("not supported") + return NestedTensor(tensor, mask) + + +# _onnx_nested_tensor_from_tensor_list() is an implementation of +# nested_tensor_from_tensor_list() that is supported by ONNX tracing. +@torch.jit.unused +def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: + max_size = [] + for i in range(tensor_list[0].dim()): + max_size_i = torch.max( + torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) + ).to(torch.int64) + max_size.append(max_size_i) + max_size = tuple(max_size) + + # work around for + # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + # m[: img.shape[1], :img.shape[2]] = False + # which is not yet supported in onnx + padded_imgs = [] + padded_masks = [] + for img in tensor_list: + padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] + padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) + padded_imgs.append(padded_img) + + m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) + padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) + padded_masks.append(padded_mask.to(torch.bool)) + + tensor = torch.stack(padded_imgs) + mask = torch.stack(padded_masks) + + return NestedTensor(tensor, mask=mask) + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + import builtins as __builtin__ + + builtin_print = __builtin__.print + + def print(*args, **kwargs): + force = kwargs.pop("force", False) + if is_master or force: + builtin_print(*args, **kwargs) + + __builtin__.print = print + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank(): + if not is_dist_avail_and_initialized(): + return 0 + return dist.get_rank() + + +def is_main_process(): + return get_rank() == 0 + + +def save_on_master(*args, **kwargs): + if is_main_process(): + torch.save(*args, **kwargs) + + +def init_distributed_mode(args): + if "WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != "": # 'RANK' in os.environ and + args.rank = int(os.environ["RANK"]) + args.world_size = int(os.environ["WORLD_SIZE"]) + args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"]) + + # launch by torch.distributed.launch + # Single node + # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ... + # Multi nodes + # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... + # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... + # args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK')) + # local_world_size = int(os.environ['GPU_PER_NODE_COUNT']) + # args.world_size = args.world_size * local_world_size + # args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) + # args.rank = args.rank * local_world_size + args.local_rank + print( + "world size: {}, rank: {}, local rank: {}".format( + args.world_size, args.rank, args.local_rank + ) + ) + print(json.dumps(dict(os.environ), indent=2)) + elif "SLURM_PROCID" in os.environ: + args.rank = int(os.environ["SLURM_PROCID"]) + args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"]) + args.world_size = int(os.environ["SLURM_NPROCS"]) + + print( + "world size: {}, world rank: {}, local rank: {}, device_count: {}".format( + args.world_size, args.rank, args.local_rank, torch.cuda.device_count() + ) + ) + else: + print("Not using distributed mode") + args.distributed = False + args.world_size = 1 + args.rank = 0 + args.local_rank = 0 + return + + print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank)) + args.distributed = True + torch.cuda.set_device(args.local_rank) + args.dist_backend = "nccl" + print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) + + torch.distributed.init_process_group( + backend=args.dist_backend, + world_size=args.world_size, + rank=args.rank, + init_method=args.dist_url, + ) + + print("Before torch.distributed.barrier()") + torch.distributed.barrier() + print("End torch.distributed.barrier()") + setup_for_distributed(args.rank == 0) + + +@torch.no_grad() +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + if target.numel() == 0: + return [torch.zeros([], device=output.device)] + maxk = max(topk) + batch_size = target.size(0) + + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + + res = [] + for k in topk: + correct_k = correct[:k].view(-1).float().sum(0) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +@torch.no_grad() +def accuracy_onehot(pred, gt): + """_summary_ + + Args: + pred (_type_): n, c + gt (_type_): n, c + """ + tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum() + acc = tp / gt.shape[0] * 100 + return acc + + +def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): + # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor + """ + Equivalent to nn.functional.interpolate, but with support for empty batch sizes. + This will eventually be supported natively by PyTorch, and this + class can go away. + """ + if __torchvision_need_compat_flag < 0.7: + if input.numel() > 0: + return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) + + output_shape = _output_size(2, input, size, scale_factor) + output_shape = list(input.shape[:-2]) + list(output_shape) + return _new_empty_tensor(input, output_shape) + else: + return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) + + +class color_sys: + def __init__(self, num_colors) -> None: + self.num_colors = num_colors + colors = [] + for i in np.arange(0.0, 360.0, 360.0 / num_colors): + hue = i / 360.0 + lightness = (50 + np.random.rand() * 10) / 100.0 + saturation = (90 + np.random.rand() * 10) / 100.0 + colors.append( + tuple([int(j * 255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)]) + ) + self.colors = colors + + def __call__(self, idx): + return self.colors[idx] + + +def inverse_sigmoid(x, eps=1e-3): + x = x.clamp(min=0, max=1) + x1 = x.clamp(min=eps) + x2 = (1 - x).clamp(min=eps) + return torch.log(x1 / x2) + + +def clean_state_dict(state_dict): + new_state_dict = OrderedDict() + for k, v in state_dict.items(): + if k[:7] == "module.": + k = k[7:] # remove `module.` + new_state_dict[k] = v + return new_state_dict diff --git a/GroundingDINO/groundingdino/util/slconfig.py b/GroundingDINO/groundingdino/util/slconfig.py new file mode 100644 index 0000000000000000000000000000000000000000..3f293e3aff215a3c7c2f7d21d27853493b6ebfbc --- /dev/null +++ b/GroundingDINO/groundingdino/util/slconfig.py @@ -0,0 +1,427 @@ +# ========================================================== +# Modified from mmcv +# ========================================================== +import ast +import os.path as osp +import shutil +import sys +import tempfile +from argparse import Action +from importlib import import_module +import platform + +from addict import Dict +from yapf.yapflib.yapf_api import FormatCode + +BASE_KEY = "_base_" +DELETE_KEY = "_delete_" +RESERVED_KEYS = ["filename", "text", "pretty_text", "get", "dump", "merge_from_dict"] + + +def check_file_exist(filename, msg_tmpl='file "{}" does not exist'): + if not osp.isfile(filename): + raise FileNotFoundError(msg_tmpl.format(filename)) + + +class ConfigDict(Dict): + def __missing__(self, name): + raise KeyError(name) + + def __getattr__(self, name): + try: + value = super(ConfigDict, self).__getattr__(name) + except KeyError: + ex = AttributeError(f"'{self.__class__.__name__}' object has no " f"attribute '{name}'") + except Exception as e: + ex = e + else: + return value + raise ex + + +class SLConfig(object): + """ + config files. + only support .py file as config now. + + ref: mmcv.utils.config + + Example: + >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1]))) + >>> cfg.a + 1 + >>> cfg.b + {'b1': [0, 1]} + >>> cfg.b.b1 + [0, 1] + >>> cfg = Config.fromfile('tests/data/config/a.py') + >>> cfg.filename + "/home/kchen/projects/mmcv/tests/data/config/a.py" + >>> cfg.item4 + 'test' + >>> cfg + "Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: " + "{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}" + """ + + @staticmethod + def _validate_py_syntax(filename): + with open(filename) as f: + content = f.read() + try: + ast.parse(content) + except SyntaxError: + raise SyntaxError("There are syntax errors in config " f"file {filename}") + + @staticmethod + def _file2dict(filename): + filename = osp.abspath(osp.expanduser(filename)) + check_file_exist(filename) + if filename.lower().endswith(".py"): + with tempfile.TemporaryDirectory() as temp_config_dir: + temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py") + temp_config_name = osp.basename(temp_config_file.name) + if platform.system() == 'Windows': + temp_config_file.close() + shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name)) + temp_module_name = osp.splitext(temp_config_name)[0] + sys.path.insert(0, temp_config_dir) + SLConfig._validate_py_syntax(filename) + mod = import_module(temp_module_name) + sys.path.pop(0) + cfg_dict = { + name: value for name, value in mod.__dict__.items() if not name.startswith("__") + } + # delete imported module + del sys.modules[temp_module_name] + # close temp file + temp_config_file.close() + elif filename.lower().endswith((".yml", ".yaml", ".json")): + from .slio import slload + + cfg_dict = slload(filename) + else: + raise IOError("Only py/yml/yaml/json type are supported now!") + + cfg_text = filename + "\n" + with open(filename, "r") as f: + cfg_text += f.read() + + # parse the base file + if BASE_KEY in cfg_dict: + cfg_dir = osp.dirname(filename) + base_filename = cfg_dict.pop(BASE_KEY) + base_filename = base_filename if isinstance(base_filename, list) else [base_filename] + + cfg_dict_list = list() + cfg_text_list = list() + for f in base_filename: + _cfg_dict, _cfg_text = SLConfig._file2dict(osp.join(cfg_dir, f)) + cfg_dict_list.append(_cfg_dict) + cfg_text_list.append(_cfg_text) + + base_cfg_dict = dict() + for c in cfg_dict_list: + if len(base_cfg_dict.keys() & c.keys()) > 0: + raise KeyError("Duplicate key is not allowed among bases") + # TODO Allow the duplicate key while warnning user + base_cfg_dict.update(c) + + base_cfg_dict = SLConfig._merge_a_into_b(cfg_dict, base_cfg_dict) + cfg_dict = base_cfg_dict + + # merge cfg_text + cfg_text_list.append(cfg_text) + cfg_text = "\n".join(cfg_text_list) + + return cfg_dict, cfg_text + + @staticmethod + def _merge_a_into_b(a, b): + """merge dict `a` into dict `b` (non-inplace). + values in `a` will overwrite `b`. + copy first to avoid inplace modification + + Args: + a ([type]): [description] + b ([type]): [description] + + Returns: + [dict]: [description] + """ + # import ipdb; ipdb.set_trace() + if not isinstance(a, dict): + return a + + b = b.copy() + for k, v in a.items(): + if isinstance(v, dict) and k in b and not v.pop(DELETE_KEY, False): + + if not isinstance(b[k], dict) and not isinstance(b[k], list): + # if : + # import ipdb; ipdb.set_trace() + raise TypeError( + f"{k}={v} in child config cannot inherit from base " + f"because {k} is a dict in the child config but is of " + f"type {type(b[k])} in base config. You may set " + f"`{DELETE_KEY}=True` to ignore the base config" + ) + b[k] = SLConfig._merge_a_into_b(v, b[k]) + elif isinstance(b, list): + try: + _ = int(k) + except: + raise TypeError( + f"b is a list, " f"index {k} should be an int when input but {type(k)}" + ) + b[int(k)] = SLConfig._merge_a_into_b(v, b[int(k)]) + else: + b[k] = v + + return b + + @staticmethod + def fromfile(filename): + cfg_dict, cfg_text = SLConfig._file2dict(filename) + return SLConfig(cfg_dict, cfg_text=cfg_text, filename=filename) + + def __init__(self, cfg_dict=None, cfg_text=None, filename=None): + if cfg_dict is None: + cfg_dict = dict() + elif not isinstance(cfg_dict, dict): + raise TypeError("cfg_dict must be a dict, but " f"got {type(cfg_dict)}") + for key in cfg_dict: + if key in RESERVED_KEYS: + raise KeyError(f"{key} is reserved for config file") + + super(SLConfig, self).__setattr__("_cfg_dict", ConfigDict(cfg_dict)) + super(SLConfig, self).__setattr__("_filename", filename) + if cfg_text: + text = cfg_text + elif filename: + with open(filename, "r") as f: + text = f.read() + else: + text = "" + super(SLConfig, self).__setattr__("_text", text) + + @property + def filename(self): + return self._filename + + @property + def text(self): + return self._text + + @property + def pretty_text(self): + + indent = 4 + + def _indent(s_, num_spaces): + s = s_.split("\n") + if len(s) == 1: + return s_ + first = s.pop(0) + s = [(num_spaces * " ") + line for line in s] + s = "\n".join(s) + s = first + "\n" + s + return s + + def _format_basic_types(k, v, use_mapping=False): + if isinstance(v, str): + v_str = f"'{v}'" + else: + v_str = str(v) + + if use_mapping: + k_str = f"'{k}'" if isinstance(k, str) else str(k) + attr_str = f"{k_str}: {v_str}" + else: + attr_str = f"{str(k)}={v_str}" + attr_str = _indent(attr_str, indent) + + return attr_str + + def _format_list(k, v, use_mapping=False): + # check if all items in the list are dict + if all(isinstance(_, dict) for _ in v): + v_str = "[\n" + v_str += "\n".join( + f"dict({_indent(_format_dict(v_), indent)})," for v_ in v + ).rstrip(",") + if use_mapping: + k_str = f"'{k}'" if isinstance(k, str) else str(k) + attr_str = f"{k_str}: {v_str}" + else: + attr_str = f"{str(k)}={v_str}" + attr_str = _indent(attr_str, indent) + "]" + else: + attr_str = _format_basic_types(k, v, use_mapping) + return attr_str + + def _contain_invalid_identifier(dict_str): + contain_invalid_identifier = False + for key_name in dict_str: + contain_invalid_identifier |= not str(key_name).isidentifier() + return contain_invalid_identifier + + def _format_dict(input_dict, outest_level=False): + r = "" + s = [] + + use_mapping = _contain_invalid_identifier(input_dict) + if use_mapping: + r += "{" + for idx, (k, v) in enumerate(input_dict.items()): + is_last = idx >= len(input_dict) - 1 + end = "" if outest_level or is_last else "," + if isinstance(v, dict): + v_str = "\n" + _format_dict(v) + if use_mapping: + k_str = f"'{k}'" if isinstance(k, str) else str(k) + attr_str = f"{k_str}: dict({v_str}" + else: + attr_str = f"{str(k)}=dict({v_str}" + attr_str = _indent(attr_str, indent) + ")" + end + elif isinstance(v, list): + attr_str = _format_list(k, v, use_mapping) + end + else: + attr_str = _format_basic_types(k, v, use_mapping) + end + + s.append(attr_str) + r += "\n".join(s) + if use_mapping: + r += "}" + return r + + cfg_dict = self._cfg_dict.to_dict() + text = _format_dict(cfg_dict, outest_level=True) + # copied from setup.cfg + yapf_style = dict( + based_on_style="pep8", + blank_line_before_nested_class_or_def=True, + split_before_expression_after_opening_paren=True, + ) + text, _ = FormatCode(text, style_config=yapf_style, verify=True) + + return text + + def __repr__(self): + return f"Config (path: {self.filename}): {self._cfg_dict.__repr__()}" + + def __len__(self): + return len(self._cfg_dict) + + def __getattr__(self, name): + # # debug + # print('+'*15) + # print('name=%s' % name) + # print("addr:", id(self)) + # # print('type(self):', type(self)) + # print(self.__dict__) + # print('+'*15) + # if self.__dict__ == {}: + # raise ValueError + + return getattr(self._cfg_dict, name) + + def __getitem__(self, name): + return self._cfg_dict.__getitem__(name) + + def __setattr__(self, name, value): + if isinstance(value, dict): + value = ConfigDict(value) + self._cfg_dict.__setattr__(name, value) + + def __setitem__(self, name, value): + if isinstance(value, dict): + value = ConfigDict(value) + self._cfg_dict.__setitem__(name, value) + + def __iter__(self): + return iter(self._cfg_dict) + + def dump(self, file=None): + # import ipdb; ipdb.set_trace() + if file is None: + return self.pretty_text + else: + with open(file, "w") as f: + f.write(self.pretty_text) + + def merge_from_dict(self, options): + """Merge list into cfg_dict + + Merge the dict parsed by MultipleKVAction into this cfg. + + Examples: + >>> options = {'model.backbone.depth': 50, + ... 'model.backbone.with_cp':True} + >>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet')))) + >>> cfg.merge_from_dict(options) + >>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict') + >>> assert cfg_dict == dict( + ... model=dict(backbone=dict(depth=50, with_cp=True))) + + Args: + options (dict): dict of configs to merge from. + """ + option_cfg_dict = {} + for full_key, v in options.items(): + d = option_cfg_dict + key_list = full_key.split(".") + for subkey in key_list[:-1]: + d.setdefault(subkey, ConfigDict()) + d = d[subkey] + subkey = key_list[-1] + d[subkey] = v + + cfg_dict = super(SLConfig, self).__getattribute__("_cfg_dict") + super(SLConfig, self).__setattr__( + "_cfg_dict", SLConfig._merge_a_into_b(option_cfg_dict, cfg_dict) + ) + + # for multiprocess + def __setstate__(self, state): + self.__init__(state) + + def copy(self): + return SLConfig(self._cfg_dict.copy()) + + def deepcopy(self): + return SLConfig(self._cfg_dict.deepcopy()) + + +class DictAction(Action): + """ + argparse action to split an argument into KEY=VALUE form + on the first = and append to a dictionary. List options should + be passed as comma separated values, i.e KEY=V1,V2,V3 + """ + + @staticmethod + def _parse_int_float_bool(val): + try: + return int(val) + except ValueError: + pass + try: + return float(val) + except ValueError: + pass + if val.lower() in ["true", "false"]: + return True if val.lower() == "true" else False + if val.lower() in ["none", "null"]: + return None + return val + + def __call__(self, parser, namespace, values, option_string=None): + options = {} + for kv in values: + key, val = kv.split("=", maxsplit=1) + val = [self._parse_int_float_bool(v) for v in val.split(",")] + if len(val) == 1: + val = val[0] + options[key] = val + setattr(namespace, self.dest, options) diff --git a/GroundingDINO/groundingdino/util/slio.py b/GroundingDINO/groundingdino/util/slio.py new file mode 100644 index 0000000000000000000000000000000000000000..72c1f0f7b82cdc931d381feef64fe15815ba657e --- /dev/null +++ b/GroundingDINO/groundingdino/util/slio.py @@ -0,0 +1,177 @@ +# ========================================================== +# Modified from mmcv +# ========================================================== + +import json +import pickle +from abc import ABCMeta, abstractmethod +from pathlib import Path + +import yaml + +try: + from yaml import CLoader as Loader, CDumper as Dumper +except ImportError: + from yaml import Loader, Dumper + + +# =========================== +# Rigister handler +# =========================== + + +class BaseFileHandler(metaclass=ABCMeta): + @abstractmethod + def load_from_fileobj(self, file, **kwargs): + pass + + @abstractmethod + def dump_to_fileobj(self, obj, file, **kwargs): + pass + + @abstractmethod + def dump_to_str(self, obj, **kwargs): + pass + + def load_from_path(self, filepath, mode="r", **kwargs): + with open(filepath, mode) as f: + return self.load_from_fileobj(f, **kwargs) + + def dump_to_path(self, obj, filepath, mode="w", **kwargs): + with open(filepath, mode) as f: + self.dump_to_fileobj(obj, f, **kwargs) + + +class JsonHandler(BaseFileHandler): + def load_from_fileobj(self, file): + return json.load(file) + + def dump_to_fileobj(self, obj, file, **kwargs): + json.dump(obj, file, **kwargs) + + def dump_to_str(self, obj, **kwargs): + return json.dumps(obj, **kwargs) + + +class PickleHandler(BaseFileHandler): + def load_from_fileobj(self, file, **kwargs): + return pickle.load(file, **kwargs) + + def load_from_path(self, filepath, **kwargs): + return super(PickleHandler, self).load_from_path(filepath, mode="rb", **kwargs) + + def dump_to_str(self, obj, **kwargs): + kwargs.setdefault("protocol", 2) + return pickle.dumps(obj, **kwargs) + + def dump_to_fileobj(self, obj, file, **kwargs): + kwargs.setdefault("protocol", 2) + pickle.dump(obj, file, **kwargs) + + def dump_to_path(self, obj, filepath, **kwargs): + super(PickleHandler, self).dump_to_path(obj, filepath, mode="wb", **kwargs) + + +class YamlHandler(BaseFileHandler): + def load_from_fileobj(self, file, **kwargs): + kwargs.setdefault("Loader", Loader) + return yaml.load(file, **kwargs) + + def dump_to_fileobj(self, obj, file, **kwargs): + kwargs.setdefault("Dumper", Dumper) + yaml.dump(obj, file, **kwargs) + + def dump_to_str(self, obj, **kwargs): + kwargs.setdefault("Dumper", Dumper) + return yaml.dump(obj, **kwargs) + + +file_handlers = { + "json": JsonHandler(), + "yaml": YamlHandler(), + "yml": YamlHandler(), + "pickle": PickleHandler(), + "pkl": PickleHandler(), +} + +# =========================== +# load and dump +# =========================== + + +def is_str(x): + """Whether the input is an string instance. + + Note: This method is deprecated since python 2 is no longer supported. + """ + return isinstance(x, str) + + +def slload(file, file_format=None, **kwargs): + """Load data from json/yaml/pickle files. + + This method provides a unified api for loading data from serialized files. + + Args: + file (str or :obj:`Path` or file-like object): Filename or a file-like + object. + file_format (str, optional): If not specified, the file format will be + inferred from the file extension, otherwise use the specified one. + Currently supported formats include "json", "yaml/yml" and + "pickle/pkl". + + Returns: + The content from the file. + """ + if isinstance(file, Path): + file = str(file) + if file_format is None and is_str(file): + file_format = file.split(".")[-1] + if file_format not in file_handlers: + raise TypeError(f"Unsupported format: {file_format}") + + handler = file_handlers[file_format] + if is_str(file): + obj = handler.load_from_path(file, **kwargs) + elif hasattr(file, "read"): + obj = handler.load_from_fileobj(file, **kwargs) + else: + raise TypeError('"file" must be a filepath str or a file-object') + return obj + + +def sldump(obj, file=None, file_format=None, **kwargs): + """Dump data to json/yaml/pickle strings or files. + + This method provides a unified api for dumping data as strings or to files, + and also supports custom arguments for each file format. + + Args: + obj (any): The python object to be dumped. + file (str or :obj:`Path` or file-like object, optional): If not + specified, then the object is dump to a str, otherwise to a file + specified by the filename or file-like object. + file_format (str, optional): Same as :func:`load`. + + Returns: + bool: True for success, False otherwise. + """ + if isinstance(file, Path): + file = str(file) + if file_format is None: + if is_str(file): + file_format = file.split(".")[-1] + elif file is None: + raise ValueError("file_format must be specified since file is None") + if file_format not in file_handlers: + raise TypeError(f"Unsupported format: {file_format}") + + handler = file_handlers[file_format] + if file is None: + return handler.dump_to_str(obj, **kwargs) + elif is_str(file): + handler.dump_to_path(obj, file, **kwargs) + elif hasattr(file, "write"): + handler.dump_to_fileobj(obj, file, **kwargs) + else: + raise TypeError('"file" must be a filename str or a file-object') diff --git a/GroundingDINO/groundingdino/util/time_counter.py b/GroundingDINO/groundingdino/util/time_counter.py new file mode 100644 index 0000000000000000000000000000000000000000..0aedb2e4d61bfbe7571dca9d50053f0fedaa1359 --- /dev/null +++ b/GroundingDINO/groundingdino/util/time_counter.py @@ -0,0 +1,62 @@ +import json +import time + + +class TimeCounter: + def __init__(self) -> None: + pass + + def clear(self): + self.timedict = {} + self.basetime = time.perf_counter() + + def timeit(self, name): + nowtime = time.perf_counter() - self.basetime + self.timedict[name] = nowtime + self.basetime = time.perf_counter() + + +class TimeHolder: + def __init__(self) -> None: + self.timedict = {} + + def update(self, _timedict: dict): + for k, v in _timedict.items(): + if k not in self.timedict: + self.timedict[k] = AverageMeter(name=k, val_only=True) + self.timedict[k].update(val=v) + + def final_res(self): + return {k: v.avg for k, v in self.timedict.items()} + + def __str__(self): + return json.dumps(self.final_res(), indent=2) + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self, name, fmt=":f", val_only=False): + self.name = name + self.fmt = fmt + self.val_only = val_only + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + def __str__(self): + if self.val_only: + fmtstr = "{name} {val" + self.fmt + "}" + else: + fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" + return fmtstr.format(**self.__dict__) diff --git a/GroundingDINO/groundingdino/util/utils.py b/GroundingDINO/groundingdino/util/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e9f0318e306fa04bff0ada70486b41aaa69b07c8 --- /dev/null +++ b/GroundingDINO/groundingdino/util/utils.py @@ -0,0 +1,608 @@ +import argparse +import json +import warnings +from collections import OrderedDict +from copy import deepcopy +from typing import Any, Dict, List + +import numpy as np +import torch +from transformers import AutoTokenizer + +from groundingdino.util.slconfig import SLConfig + + +def slprint(x, name="x"): + if isinstance(x, (torch.Tensor, np.ndarray)): + print(f"{name}.shape:", x.shape) + elif isinstance(x, (tuple, list)): + print("type x:", type(x)) + for i in range(min(10, len(x))): + slprint(x[i], f"{name}[{i}]") + elif isinstance(x, dict): + for k, v in x.items(): + slprint(v, f"{name}[{k}]") + else: + print(f"{name}.type:", type(x)) + + +def clean_state_dict(state_dict): + new_state_dict = OrderedDict() + for k, v in state_dict.items(): + if k[:7] == "module.": + k = k[7:] # remove `module.` + new_state_dict[k] = v + return new_state_dict + + +def renorm( + img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] +) -> torch.FloatTensor: + # img: tensor(3,H,W) or tensor(B,3,H,W) + # return: same as img + assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() + if img.dim() == 3: + assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % ( + img.size(0), + str(img.size()), + ) + img_perm = img.permute(1, 2, 0) + mean = torch.Tensor(mean) + std = torch.Tensor(std) + img_res = img_perm * std + mean + return img_res.permute(2, 0, 1) + else: # img.dim() == 4 + assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % ( + img.size(1), + str(img.size()), + ) + img_perm = img.permute(0, 2, 3, 1) + mean = torch.Tensor(mean) + std = torch.Tensor(std) + img_res = img_perm * std + mean + return img_res.permute(0, 3, 1, 2) + + +class CocoClassMapper: + def __init__(self) -> None: + self.category_map_str = { + "1": 1, + "2": 2, + "3": 3, + "4": 4, + "5": 5, + "6": 6, + "7": 7, + "8": 8, + "9": 9, + "10": 10, + "11": 11, + "13": 12, + "14": 13, + "15": 14, + "16": 15, + "17": 16, + "18": 17, + "19": 18, + "20": 19, + "21": 20, + "22": 21, + "23": 22, + "24": 23, + "25": 24, + "27": 25, + "28": 26, + "31": 27, + "32": 28, + "33": 29, + "34": 30, + "35": 31, + "36": 32, + "37": 33, + "38": 34, + "39": 35, + "40": 36, + "41": 37, + "42": 38, + "43": 39, + "44": 40, + "46": 41, + "47": 42, + "48": 43, + "49": 44, + "50": 45, + "51": 46, + "52": 47, + "53": 48, + "54": 49, + "55": 50, + "56": 51, + "57": 52, + "58": 53, + "59": 54, + "60": 55, + "61": 56, + "62": 57, + "63": 58, + "64": 59, + "65": 60, + "67": 61, + "70": 62, + "72": 63, + "73": 64, + "74": 65, + "75": 66, + "76": 67, + "77": 68, + "78": 69, + "79": 70, + "80": 71, + "81": 72, + "82": 73, + "84": 74, + "85": 75, + "86": 76, + "87": 77, + "88": 78, + "89": 79, + "90": 80, + } + self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()} + self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()} + + def origin2compact(self, idx): + return self.origin2compact_mapper[int(idx)] + + def compact2origin(self, idx): + return self.compact2origin_mapper[int(idx)] + + +def to_device(item, device): + if isinstance(item, torch.Tensor): + return item.to(device) + elif isinstance(item, list): + return [to_device(i, device) for i in item] + elif isinstance(item, dict): + return {k: to_device(v, device) for k, v in item.items()} + else: + raise NotImplementedError( + "Call Shilong if you use other containers! type: {}".format(type(item)) + ) + + +# +def get_gaussian_mean(x, axis, other_axis, softmax=True): + """ + + Args: + x (float): Input images(BxCxHxW) + axis (int): The index for weighted mean + other_axis (int): The other index + + Returns: weighted index for axis, BxC + + """ + mat2line = torch.sum(x, axis=other_axis) + # mat2line = mat2line / mat2line.mean() * 10 + if softmax: + u = torch.softmax(mat2line, axis=2) + else: + u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6) + size = x.shape[axis] + ind = torch.linspace(0, 1, size).to(x.device) + batch = x.shape[0] + channel = x.shape[1] + index = ind.repeat([batch, channel, 1]) + mean_position = torch.sum(index * u, dim=2) + return mean_position + + +def get_expected_points_from_map(hm, softmax=True): + """get_gaussian_map_from_points + B,C,H,W -> B,N,2 float(0, 1) float(0, 1) + softargmax function + + Args: + hm (float): Input images(BxCxHxW) + + Returns: + weighted index for axis, BxCx2. float between 0 and 1. + + """ + # hm = 10*hm + B, C, H, W = hm.shape + y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C + x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C + # return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2) + return torch.stack([x_mean, y_mean], dim=2) + + +# Positional encoding (section 5.1) +# borrow from nerf +class Embedder: + def __init__(self, **kwargs): + self.kwargs = kwargs + self.create_embedding_fn() + + def create_embedding_fn(self): + embed_fns = [] + d = self.kwargs["input_dims"] + out_dim = 0 + if self.kwargs["include_input"]: + embed_fns.append(lambda x: x) + out_dim += d + + max_freq = self.kwargs["max_freq_log2"] + N_freqs = self.kwargs["num_freqs"] + + if self.kwargs["log_sampling"]: + freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs) + else: + freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs) + + for freq in freq_bands: + for p_fn in self.kwargs["periodic_fns"]: + embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)) + out_dim += d + + self.embed_fns = embed_fns + self.out_dim = out_dim + + def embed(self, inputs): + return torch.cat([fn(inputs) for fn in self.embed_fns], -1) + + +def get_embedder(multires, i=0): + import torch.nn as nn + + if i == -1: + return nn.Identity(), 3 + + embed_kwargs = { + "include_input": True, + "input_dims": 3, + "max_freq_log2": multires - 1, + "num_freqs": multires, + "log_sampling": True, + "periodic_fns": [torch.sin, torch.cos], + } + + embedder_obj = Embedder(**embed_kwargs) + embed = lambda x, eo=embedder_obj: eo.embed(x) + return embed, embedder_obj.out_dim + + +class APOPMeter: + def __init__(self) -> None: + self.tp = 0 + self.fp = 0 + self.tn = 0 + self.fn = 0 + + def update(self, pred, gt): + """ + Input: + pred, gt: Tensor() + """ + assert pred.shape == gt.shape + self.tp += torch.logical_and(pred == 1, gt == 1).sum().item() + self.fp += torch.logical_and(pred == 1, gt == 0).sum().item() + self.tn += torch.logical_and(pred == 0, gt == 0).sum().item() + self.tn += torch.logical_and(pred == 1, gt == 0).sum().item() + + def update_cm(self, tp, fp, tn, fn): + self.tp += tp + self.fp += fp + self.tn += tn + self.tn += fn + + +def inverse_sigmoid(x, eps=1e-5): + x = x.clamp(min=0, max=1) + x1 = x.clamp(min=eps) + x2 = (1 - x).clamp(min=eps) + return torch.log(x1 / x2) + + +def get_raw_dict(args): + """ + return the dicf contained in args. + + e.g: + >>> with open(path, 'w') as f: + json.dump(get_raw_dict(args), f, indent=2) + """ + if isinstance(args, argparse.Namespace): + return vars(args) + elif isinstance(args, dict): + return args + elif isinstance(args, SLConfig): + return args._cfg_dict + else: + raise NotImplementedError("Unknown type {}".format(type(args))) + + +def stat_tensors(tensor): + assert tensor.dim() == 1 + tensor_sm = tensor.softmax(0) + entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum() + + return { + "max": tensor.max(), + "min": tensor.min(), + "mean": tensor.mean(), + "var": tensor.var(), + "std": tensor.var() ** 0.5, + "entropy": entropy, + } + + +class NiceRepr: + """Inherit from this class and define ``__nice__`` to "nicely" print your + objects. + + Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function + Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. + If the inheriting class has a ``__len__``, method then the default + ``__nice__`` method will return its length. + + Example: + >>> class Foo(NiceRepr): + ... def __nice__(self): + ... return 'info' + >>> foo = Foo() + >>> assert str(foo) == '' + >>> assert repr(foo).startswith('>> class Bar(NiceRepr): + ... pass + >>> bar = Bar() + >>> import pytest + >>> with pytest.warns(None) as record: + >>> assert 'object at' in str(bar) + >>> assert 'object at' in repr(bar) + + Example: + >>> class Baz(NiceRepr): + ... def __len__(self): + ... return 5 + >>> baz = Baz() + >>> assert str(baz) == '' + """ + + def __nice__(self): + """str: a "nice" summary string describing this module""" + if hasattr(self, "__len__"): + # It is a common pattern for objects to use __len__ in __nice__ + # As a convenience we define a default __nice__ for these objects + return str(len(self)) + else: + # In all other cases force the subclass to overload __nice__ + raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}") + + def __repr__(self): + """str: the string of the module""" + try: + nice = self.__nice__() + classname = self.__class__.__name__ + return f"<{classname}({nice}) at {hex(id(self))}>" + except NotImplementedError as ex: + warnings.warn(str(ex), category=RuntimeWarning) + return object.__repr__(self) + + def __str__(self): + """str: the string of the module""" + try: + classname = self.__class__.__name__ + nice = self.__nice__() + return f"<{classname}({nice})>" + except NotImplementedError as ex: + warnings.warn(str(ex), category=RuntimeWarning) + return object.__repr__(self) + + +def ensure_rng(rng=None): + """Coerces input into a random number generator. + + If the input is None, then a global random state is returned. + + If the input is a numeric value, then that is used as a seed to construct a + random state. Otherwise the input is returned as-is. + + Adapted from [1]_. + + Args: + rng (int | numpy.random.RandomState | None): + if None, then defaults to the global rng. Otherwise this can be an + integer or a RandomState class + Returns: + (numpy.random.RandomState) : rng - + a numpy random number generator + + References: + .. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501 + """ + + if rng is None: + rng = np.random.mtrand._rand + elif isinstance(rng, int): + rng = np.random.RandomState(rng) + else: + rng = rng + return rng + + +def random_boxes(num=1, scale=1, rng=None): + """Simple version of ``kwimage.Boxes.random`` + + Returns: + Tensor: shape (n, 4) in x1, y1, x2, y2 format. + + References: + https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 + + Example: + >>> num = 3 + >>> scale = 512 + >>> rng = 0 + >>> boxes = random_boxes(num, scale, rng) + >>> print(boxes) + tensor([[280.9925, 278.9802, 308.6148, 366.1769], + [216.9113, 330.6978, 224.0446, 456.5878], + [405.3632, 196.3221, 493.3953, 270.7942]]) + """ + rng = ensure_rng(rng) + + tlbr = rng.rand(num, 4).astype(np.float32) + + tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2]) + tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3]) + br_x = np.maximum(tlbr[:, 0], tlbr[:, 2]) + br_y = np.maximum(tlbr[:, 1], tlbr[:, 3]) + + tlbr[:, 0] = tl_x * scale + tlbr[:, 1] = tl_y * scale + tlbr[:, 2] = br_x * scale + tlbr[:, 3] = br_y * scale + + boxes = torch.from_numpy(tlbr) + return boxes + + +class ModelEma(torch.nn.Module): + def __init__(self, model, decay=0.9997, device=None): + super(ModelEma, self).__init__() + # make a copy of the model for accumulating moving average of weights + self.module = deepcopy(model) + self.module.eval() + + # import ipdb; ipdb.set_trace() + + self.decay = decay + self.device = device # perform ema on different device from model if set + if self.device is not None: + self.module.to(device=device) + + def _update(self, model, update_fn): + with torch.no_grad(): + for ema_v, model_v in zip( + self.module.state_dict().values(), model.state_dict().values() + ): + if self.device is not None: + model_v = model_v.to(device=self.device) + ema_v.copy_(update_fn(ema_v, model_v)) + + def update(self, model): + self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m) + + def set(self, model): + self._update(model, update_fn=lambda e, m: m) + + +class BestMetricSingle: + def __init__(self, init_res=0.0, better="large") -> None: + self.init_res = init_res + self.best_res = init_res + self.best_ep = -1 + + self.better = better + assert better in ["large", "small"] + + def isbetter(self, new_res, old_res): + if self.better == "large": + return new_res > old_res + if self.better == "small": + return new_res < old_res + + def update(self, new_res, ep): + if self.isbetter(new_res, self.best_res): + self.best_res = new_res + self.best_ep = ep + return True + return False + + def __str__(self) -> str: + return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep) + + def __repr__(self) -> str: + return self.__str__() + + def summary(self) -> dict: + return { + "best_res": self.best_res, + "best_ep": self.best_ep, + } + + +class BestMetricHolder: + def __init__(self, init_res=0.0, better="large", use_ema=False) -> None: + self.best_all = BestMetricSingle(init_res, better) + self.use_ema = use_ema + if use_ema: + self.best_ema = BestMetricSingle(init_res, better) + self.best_regular = BestMetricSingle(init_res, better) + + def update(self, new_res, epoch, is_ema=False): + """ + return if the results is the best. + """ + if not self.use_ema: + return self.best_all.update(new_res, epoch) + else: + if is_ema: + self.best_ema.update(new_res, epoch) + return self.best_all.update(new_res, epoch) + else: + self.best_regular.update(new_res, epoch) + return self.best_all.update(new_res, epoch) + + def summary(self): + if not self.use_ema: + return self.best_all.summary() + + res = {} + res.update({f"all_{k}": v for k, v in self.best_all.summary().items()}) + res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()}) + res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()}) + return res + + def __repr__(self) -> str: + return json.dumps(self.summary(), indent=2) + + def __str__(self) -> str: + return self.__repr__() + + +def targets_to(targets: List[Dict[str, Any]], device): + """Moves the target dicts to the given device.""" + excluded_keys = [ + "questionId", + "tokens_positive", + "strings_positive", + "tokens", + "dataset_name", + "sentence_id", + "original_img_id", + "nb_eval", + "task_id", + "original_id", + "token_span", + "caption", + "dataset_type", + ] + return [ + {k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets + ] + + +def get_phrases_from_posmap( + posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer +): + assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor" + if posmap.dim() == 1: + non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist() + token_ids = [tokenized["input_ids"][i] for i in non_zero_idx] + return tokenizer.decode(token_ids) + else: + raise NotImplementedError("posmap must be 1-dim") diff --git a/GroundingDINO/groundingdino/util/visualizer.py b/GroundingDINO/groundingdino/util/visualizer.py new file mode 100644 index 0000000000000000000000000000000000000000..7a1b7b101e9b73f75f9136bc67f2063c7c1cf1c1 --- /dev/null +++ b/GroundingDINO/groundingdino/util/visualizer.py @@ -0,0 +1,318 @@ +# -*- coding: utf-8 -*- +""" +@File : visualizer.py +@Time : 2022/04/05 11:39:33 +@Author : Shilong Liu +@Contact : slongliu86@gmail.com +""" + +import datetime +import os + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import torch +from matplotlib import transforms +from matplotlib.collections import PatchCollection +from matplotlib.patches import Polygon +from pycocotools import mask as maskUtils + + +def renorm( + img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] +) -> torch.FloatTensor: + # img: tensor(3,H,W) or tensor(B,3,H,W) + # return: same as img + assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() + if img.dim() == 3: + assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % ( + img.size(0), + str(img.size()), + ) + img_perm = img.permute(1, 2, 0) + mean = torch.Tensor(mean) + std = torch.Tensor(std) + img_res = img_perm * std + mean + return img_res.permute(2, 0, 1) + else: # img.dim() == 4 + assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % ( + img.size(1), + str(img.size()), + ) + img_perm = img.permute(0, 2, 3, 1) + mean = torch.Tensor(mean) + std = torch.Tensor(std) + img_res = img_perm * std + mean + return img_res.permute(0, 3, 1, 2) + + +class ColorMap: + def __init__(self, basergb=[255, 255, 0]): + self.basergb = np.array(basergb) + + def __call__(self, attnmap): + # attnmap: h, w. np.uint8. + # return: h, w, 4. np.uint8. + assert attnmap.dtype == np.uint8 + h, w = attnmap.shape + res = self.basergb.copy() + res = res[None][None].repeat(h, 0).repeat(w, 1) # h, w, 3 + attn1 = attnmap.copy()[..., None] # h, w, 1 + res = np.concatenate((res, attn1), axis=-1).astype(np.uint8) + return res + + +def rainbow_text(x, y, ls, lc, **kw): + """ + Take a list of strings ``ls`` and colors ``lc`` and place them next to each + other, with text ls[i] being shown in color lc[i]. + + This example shows how to do both vertical and horizontal text, and will + pass all keyword arguments to plt.text, so you can set the font size, + family, etc. + """ + t = plt.gca().transData + fig = plt.gcf() + plt.show() + + # horizontal version + for s, c in zip(ls, lc): + text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw) + text.draw(fig.canvas.get_renderer()) + ex = text.get_window_extent() + t = transforms.offset_copy(text._transform, x=ex.width, units="dots") + + # #vertical version + # for s,c in zip(ls,lc): + # text = plt.text(x,y," "+s+" ",color=c, transform=t, + # rotation=90,va='bottom',ha='center',**kw) + # text.draw(fig.canvas.get_renderer()) + # ex = text.get_window_extent() + # t = transforms.offset_copy(text._transform, y=ex.height, units='dots') + + +class COCOVisualizer: + def __init__(self, coco=None, tokenlizer=None) -> None: + self.coco = coco + + def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"): + """ + img: tensor(3, H, W) + tgt: make sure they are all on cpu. + must have items: 'image_id', 'boxes', 'size' + """ + plt.figure(dpi=dpi) + plt.rcParams["font.size"] = "5" + ax = plt.gca() + img = renorm(img).permute(1, 2, 0) + # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': + # import ipdb; ipdb.set_trace() + ax.imshow(img) + + self.addtgt(tgt) + + if tgt is None: + image_id = 0 + elif "image_id" not in tgt: + image_id = 0 + else: + image_id = tgt["image_id"] + + if caption is None: + savename = "{}/{}-{}.png".format( + savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-") + ) + else: + savename = "{}/{}-{}-{}.png".format( + savedir, caption, int(image_id), str(datetime.datetime.now()).replace(" ", "-") + ) + print("savename: {}".format(savename)) + os.makedirs(os.path.dirname(savename), exist_ok=True) + plt.savefig(savename) + plt.close() + + def addtgt(self, tgt): + """ """ + if tgt is None or not "boxes" in tgt: + ax = plt.gca() + + if "caption" in tgt: + ax.set_title(tgt["caption"], wrap=True) + + ax.set_axis_off() + return + + ax = plt.gca() + H, W = tgt["size"] + numbox = tgt["boxes"].shape[0] + + color = [] + polygons = [] + boxes = [] + for box in tgt["boxes"].cpu(): + unnormbbox = box * torch.Tensor([W, H, W, H]) + unnormbbox[:2] -= unnormbbox[2:] / 2 + [bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist() + boxes.append([bbox_x, bbox_y, bbox_w, bbox_h]) + poly = [ + [bbox_x, bbox_y], + [bbox_x, bbox_y + bbox_h], + [bbox_x + bbox_w, bbox_y + bbox_h], + [bbox_x + bbox_w, bbox_y], + ] + np_poly = np.array(poly).reshape((4, 2)) + polygons.append(Polygon(np_poly)) + c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0] + color.append(c) + + p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1) + ax.add_collection(p) + p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2) + ax.add_collection(p) + + if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0: + assert ( + len(tgt["strings_positive"]) == numbox + ), f"{len(tgt['strings_positive'])} = {numbox}, " + for idx, strlist in enumerate(tgt["strings_positive"]): + cate_id = int(tgt["labels"][idx]) + _string = str(cate_id) + ":" + " ".join(strlist) + bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx] + # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1}) + ax.text( + bbox_x, + bbox_y, + _string, + color="black", + bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1}, + ) + + if "box_label" in tgt: + assert len(tgt["box_label"]) == numbox, f"{len(tgt['box_label'])} = {numbox}, " + for idx, bl in enumerate(tgt["box_label"]): + _string = str(bl) + bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx] + # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1}) + ax.text( + bbox_x, + bbox_y, + _string, + color="black", + bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1}, + ) + + if "caption" in tgt: + ax.set_title(tgt["caption"], wrap=True) + # plt.figure() + # rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(), + # ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black']) + + if "attn" in tgt: + # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': + # import ipdb; ipdb.set_trace() + if isinstance(tgt["attn"], tuple): + tgt["attn"] = [tgt["attn"]] + for item in tgt["attn"]: + attn_map, basergb = item + attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-3) + attn_map = (attn_map * 255).astype(np.uint8) + cm = ColorMap(basergb) + heatmap = cm(attn_map) + ax.imshow(heatmap) + ax.set_axis_off() + + def showAnns(self, anns, draw_bbox=False): + """ + Display the specified annotations. + :param anns (array of object): annotations to display + :return: None + """ + if len(anns) == 0: + return 0 + if "segmentation" in anns[0] or "keypoints" in anns[0]: + datasetType = "instances" + elif "caption" in anns[0]: + datasetType = "captions" + else: + raise Exception("datasetType not supported") + if datasetType == "instances": + ax = plt.gca() + ax.set_autoscale_on(False) + polygons = [] + color = [] + for ann in anns: + c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0] + if "segmentation" in ann: + if type(ann["segmentation"]) == list: + # polygon + for seg in ann["segmentation"]: + poly = np.array(seg).reshape((int(len(seg) / 2), 2)) + polygons.append(Polygon(poly)) + color.append(c) + else: + # mask + t = self.imgs[ann["image_id"]] + if type(ann["segmentation"]["counts"]) == list: + rle = maskUtils.frPyObjects( + [ann["segmentation"]], t["height"], t["width"] + ) + else: + rle = [ann["segmentation"]] + m = maskUtils.decode(rle) + img = np.ones((m.shape[0], m.shape[1], 3)) + if ann["iscrowd"] == 1: + color_mask = np.array([2.0, 166.0, 101.0]) / 255 + if ann["iscrowd"] == 0: + color_mask = np.random.random((1, 3)).tolist()[0] + for i in range(3): + img[:, :, i] = color_mask[i] + ax.imshow(np.dstack((img, m * 0.5))) + if "keypoints" in ann and type(ann["keypoints"]) == list: + # turn skeleton into zero-based index + sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1 + kp = np.array(ann["keypoints"]) + x = kp[0::3] + y = kp[1::3] + v = kp[2::3] + for sk in sks: + if np.all(v[sk] > 0): + plt.plot(x[sk], y[sk], linewidth=3, color=c) + plt.plot( + x[v > 0], + y[v > 0], + "o", + markersize=8, + markerfacecolor=c, + markeredgecolor="k", + markeredgewidth=2, + ) + plt.plot( + x[v > 1], + y[v > 1], + "o", + markersize=8, + markerfacecolor=c, + markeredgecolor=c, + markeredgewidth=2, + ) + + if draw_bbox: + [bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"] + poly = [ + [bbox_x, bbox_y], + [bbox_x, bbox_y + bbox_h], + [bbox_x + bbox_w, bbox_y + bbox_h], + [bbox_x + bbox_w, bbox_y], + ] + np_poly = np.array(poly).reshape((4, 2)) + polygons.append(Polygon(np_poly)) + color.append(c) + + # p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) + # ax.add_collection(p) + p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2) + ax.add_collection(p) + elif datasetType == "captions": + for ann in anns: + print(ann["caption"]) diff --git a/GroundingDINO/groundingdino/util/vl_utils.py b/GroundingDINO/groundingdino/util/vl_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..c91bb02f584398f08a28e6b7719e2b99f6e28616 --- /dev/null +++ b/GroundingDINO/groundingdino/util/vl_utils.py @@ -0,0 +1,100 @@ +import os +import random +from typing import List + +import torch + + +def create_positive_map_from_span(tokenized, token_span, max_text_len=256): + """construct a map such that positive_map[i,j] = True iff box i is associated to token j + Input: + - tokenized: + - input_ids: Tensor[1, ntokens] + - attention_mask: Tensor[1, ntokens] + - token_span: list with length num_boxes. + - each item: [start_idx, end_idx] + """ + positive_map = torch.zeros((len(token_span), max_text_len), dtype=torch.float) + for j, tok_list in enumerate(token_span): + for (beg, end) in tok_list: + beg_pos = tokenized.char_to_token(beg) + end_pos = tokenized.char_to_token(end - 1) + if beg_pos is None: + try: + beg_pos = tokenized.char_to_token(beg + 1) + if beg_pos is None: + beg_pos = tokenized.char_to_token(beg + 2) + except: + beg_pos = None + if end_pos is None: + try: + end_pos = tokenized.char_to_token(end - 2) + if end_pos is None: + end_pos = tokenized.char_to_token(end - 3) + except: + end_pos = None + if beg_pos is None or end_pos is None: + continue + + assert beg_pos is not None and end_pos is not None + if os.environ.get("SHILONG_DEBUG_ONLY_ONE_POS", None) == "TRUE": + positive_map[j, beg_pos] = 1 + break + else: + positive_map[j, beg_pos : end_pos + 1].fill_(1) + + return positive_map / (positive_map.sum(-1)[:, None] + 1e-6) + + +def build_captions_and_token_span(cat_list, force_lowercase): + """ + Return: + captions: str + cat2tokenspan: dict + { + 'dog': [[0, 2]], + ... + } + """ + + cat2tokenspan = {} + captions = "" + for catname in cat_list: + class_name = catname + if force_lowercase: + class_name = class_name.lower() + if "/" in class_name: + class_name_list: List = class_name.strip().split("/") + class_name_list.append(class_name) + class_name: str = random.choice(class_name_list) + + tokens_positive_i = [] + subnamelist = [i.strip() for i in class_name.strip().split(" ")] + for subname in subnamelist: + if len(subname) == 0: + continue + if len(captions) > 0: + captions = captions + " " + strat_idx = len(captions) + end_idx = strat_idx + len(subname) + tokens_positive_i.append([strat_idx, end_idx]) + captions = captions + subname + + if len(tokens_positive_i) > 0: + captions = captions + " ." + cat2tokenspan[class_name] = tokens_positive_i + + return captions, cat2tokenspan + + +def build_id2posspan_and_caption(category_dict: dict): + """Build id2pos_span and caption from category_dict + + Args: + category_dict (dict): category_dict + """ + cat_list = [item["name"].lower() for item in category_dict] + id2catname = {item["id"]: item["name"].lower() for item in category_dict} + caption, cat2posspan = build_captions_and_token_span(cat_list, force_lowercase=True) + id2posspan = {catid: cat2posspan[catname] for catid, catname in id2catname.items()} + return id2posspan, caption diff --git a/GroundingDINO/groundingdino/version.py b/GroundingDINO/groundingdino/version.py new file mode 100644 index 0000000000000000000000000000000000000000..b794fd409a5e3b3b65ad76a43d6a01a318877640 --- /dev/null +++ b/GroundingDINO/groundingdino/version.py @@ -0,0 +1 @@ +__version__ = '0.1.0' diff --git a/GroundingDINO/requirements.txt b/GroundingDINO/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..f52ed0acc1fa8a6812b5e966de649b79d1164aa5 --- /dev/null +++ b/GroundingDINO/requirements.txt @@ -0,0 +1,10 @@ +torch +torchvision +transformers +addict +yapf +timm +numpy +opencv-python +supervision==0.3.2 +pycocotools \ No newline at end of file diff --git a/GroundingDINO/setup.py b/GroundingDINO/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..a045b763fb4a4f61bac23b735544a18ffc68d20a --- /dev/null +++ b/GroundingDINO/setup.py @@ -0,0 +1,208 @@ +# coding=utf-8 +# Copyright 2022 The IDEA Authors. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ------------------------------------------------------------------------------------------------ +# Modified from +# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/setup.py +# https://github.com/facebookresearch/detectron2/blob/main/setup.py +# https://github.com/open-mmlab/mmdetection/blob/master/setup.py +# https://github.com/Oneflow-Inc/libai/blob/main/setup.py +# ------------------------------------------------------------------------------------------------ + +import glob +import os +import subprocess + +import torch +from setuptools import find_packages, setup +from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension + +# groundingdino version info +version = "0.1.0" +package_name = "groundingdino" +cwd = os.path.dirname(os.path.abspath(__file__)) + + +sha = "Unknown" +try: + sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip() +except Exception: + pass + + +def write_version_file(): + version_path = os.path.join(cwd, "groundingdino", "version.py") + with open(version_path, "w") as f: + f.write(f"__version__ = '{version}'\n") + # f.write(f"git_version = {repr(sha)}\n") + + +requirements = ["torch", "torchvision"] + +torch_ver = [int(x) for x in torch.__version__.split(".")[:2]] + + +def get_extensions(): + this_dir = os.path.dirname(os.path.abspath(__file__)) + extensions_dir = os.path.join(this_dir, "groundingdino", "models", "GroundingDINO", "csrc") + + main_source = os.path.join(extensions_dir, "vision.cpp") + sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp")) + source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob( + os.path.join(extensions_dir, "*.cu") + ) + + sources = [main_source] + sources + + extension = CppExtension + + extra_compile_args = {"cxx": []} + define_macros = [] + + if torch.cuda.is_available() and CUDA_HOME is not None: + print("Compiling with CUDA") + extension = CUDAExtension + sources += source_cuda + define_macros += [("WITH_CUDA", None)] + extra_compile_args["nvcc"] = [ + "-DCUDA_HAS_FP16=1", + "-D__CUDA_NO_HALF_OPERATORS__", + "-D__CUDA_NO_HALF_CONVERSIONS__", + "-D__CUDA_NO_HALF2_OPERATORS__", + ] + else: + print("Compiling without CUDA") + define_macros += [("WITH_HIP", None)] + extra_compile_args["nvcc"] = [] + return None + + sources = [os.path.join(extensions_dir, s) for s in sources] + include_dirs = [extensions_dir] + + ext_modules = [ + extension( + "groundingdino._C", + sources, + include_dirs=include_dirs, + define_macros=define_macros, + extra_compile_args=extra_compile_args, + ) + ] + + return ext_modules + + +def parse_requirements(fname="requirements.txt", with_version=True): + """Parse the package dependencies listed in a requirements file but strips + specific versioning information. + + Args: + fname (str): path to requirements file + with_version (bool, default=False): if True include version specs + + Returns: + List[str]: list of requirements items + + CommandLine: + python -c "import setup; print(setup.parse_requirements())" + """ + import re + import sys + from os.path import exists + + require_fpath = fname + + def parse_line(line): + """Parse information from a line in a requirements text file.""" + if line.startswith("-r "): + # Allow specifying requirements in other files + target = line.split(" ")[1] + for info in parse_require_file(target): + yield info + else: + info = {"line": line} + if line.startswith("-e "): + info["package"] = line.split("#egg=")[1] + elif "@git+" in line: + info["package"] = line + else: + # Remove versioning from the package + pat = "(" + "|".join([">=", "==", ">"]) + ")" + parts = re.split(pat, line, maxsplit=1) + parts = [p.strip() for p in parts] + + info["package"] = parts[0] + if len(parts) > 1: + op, rest = parts[1:] + if ";" in rest: + # Handle platform specific dependencies + # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies + version, platform_deps = map(str.strip, rest.split(";")) + info["platform_deps"] = platform_deps + else: + version = rest # NOQA + info["version"] = (op, version) + yield info + + def parse_require_file(fpath): + with open(fpath, "r") as f: + for line in f.readlines(): + line = line.strip() + if line and not line.startswith("#"): + for info in parse_line(line): + yield info + + def gen_packages_items(): + if exists(require_fpath): + for info in parse_require_file(require_fpath): + parts = [info["package"]] + if with_version and "version" in info: + parts.extend(info["version"]) + if not sys.version.startswith("3.4"): + # apparently package_deps are broken in 3.4 + platform_deps = info.get("platform_deps") + if platform_deps is not None: + parts.append(";" + platform_deps) + item = "".join(parts) + yield item + + packages = list(gen_packages_items()) + return packages + + +if __name__ == "__main__": + print(f"Building wheel {package_name}-{version}") + + with open("LICENSE", "r", encoding="utf-8") as f: + license = f.read() + + write_version_file() + + setup( + name="groundingdino", + version="0.1.0", + author="International Digital Economy Academy, Shilong Liu", + url="https://github.com/IDEA-Research/GroundingDINO", + description="open-set object detector", + license=license, + install_requires=parse_requirements("requirements.txt"), + packages=find_packages( + exclude=( + "configs", + "tests", + ) + ), + ext_modules=get_extensions(), + cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, + ) diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..04cb99feebad8bb3981e1759d0a925bb32943c3f --- /dev/null +++ b/app.py @@ -0,0 +1,408 @@ +import os, sys +import random +import warnings + +os.system("python -m pip install -e sam-hq") +os.system("python -m pip install -e GroundingDINO") +os.system("pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel") +os.system("wget https://huggingface.co./ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth") +os.system("wget https://huggingface.co./lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example0.png") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example1.png") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example2.png") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example3.png") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example4.png") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example5.png") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example6.png") +os.system("wget https://raw.githubusercontent.com/SysCV/sam-hq/main/demo/input_imgs/example7.png") +sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) +sys.path.append(os.path.join(os.getcwd(), "sam-hq")) +warnings.filterwarnings("ignore") + +import gradio as gr +import argparse + +import numpy as np +import torch +import torchvision +from PIL import Image, ImageDraw, ImageFont +from scipy import ndimage + +# Grounding DINO +import GroundingDINO.groundingdino.datasets.transforms as T +from GroundingDINO.groundingdino.models import build_model +from GroundingDINO.groundingdino.util.slconfig import SLConfig +from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap + +# segment anything +from segment_anything import build_sam_vit_l, SamPredictor +import numpy as np + + +# BLIP +from transformers import BlipProcessor, BlipForConditionalGeneration + + +def generate_caption(processor, blip_model, raw_image): + # unconditional image captioning + inputs = processor(raw_image, return_tensors="pt").to( + "cuda", torch.float16) + out = blip_model.generate(**inputs) + caption = processor.decode(out[0], skip_special_tokens=True) + return caption + + +def transform_image(image_pil): + + transform = T.Compose( + [ + T.RandomResize([800], max_size=1333), + T.ToTensor(), + T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), + ] + ) + image, _ = transform(image_pil, None) # 3, h, w + return image + + +def load_model(model_config_path, model_checkpoint_path, device): + args = SLConfig.fromfile(model_config_path) + args.device = device + model = build_model(args) + checkpoint = torch.load(model_checkpoint_path, map_location="cpu") + load_res = model.load_state_dict( + clean_state_dict(checkpoint["model"]), strict=False) + print(load_res) + _ = model.eval() + return model + + +def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True): + caption = caption.lower() + caption = caption.strip() + if not caption.endswith("."): + caption = caption + "." + + with torch.no_grad(): + outputs = model(image[None], captions=[caption]) + logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) + boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) + logits.shape[0] + + # filter output + logits_filt = logits.clone() + boxes_filt = boxes.clone() + filt_mask = logits_filt.max(dim=1)[0] > box_threshold + logits_filt = logits_filt[filt_mask] # num_filt, 256 + boxes_filt = boxes_filt[filt_mask] # num_filt, 4 + logits_filt.shape[0] + + # get phrase + tokenlizer = model.tokenizer + tokenized = tokenlizer(caption) + # build pred + pred_phrases = [] + scores = [] + for logit, box in zip(logits_filt, boxes_filt): + pred_phrase = get_phrases_from_posmap( + logit > text_threshold, tokenized, tokenlizer) + if with_logits: + pred_phrases.append( + pred_phrase + f"({str(logit.max().item())[:4]})") + else: + pred_phrases.append(pred_phrase) + scores.append(logit.max().item()) + + return boxes_filt, torch.Tensor(scores), pred_phrases + + +def draw_mask(mask, draw, random_color=False): + if random_color: + color = (random.randint(0, 255), random.randint( + 0, 255), random.randint(0, 255), 153) + else: + color = (30, 144, 255, 153) + + nonzero_coords = np.transpose(np.nonzero(mask)) + + for coord in nonzero_coords: + draw.point(coord[::-1], fill=color) + + +def draw_box(box, draw, label): + # random color + color = tuple(np.random.randint(0, 255, size=3).tolist()) + + draw.rectangle(((box[0], box[1]), (box[2], box[3])), + outline=color, width=2) + + if label: + font = ImageFont.load_default() + if hasattr(font, "getbbox"): + bbox = draw.textbbox((box[0], box[1]), str(label), font) + else: + w, h = draw.textsize(str(label), font) + bbox = (box[0], box[1], w + box[0], box[1] + h) + draw.rectangle(bbox, fill=color) + draw.text((box[0], box[1]), str(label), fill="white") + + draw.text((box[0], box[1]), label) + +def draw_point(point, draw, r=10): + show_point = [] + for p in point: + x,y = p + draw.ellipse((x-r, y-r, x+r, y+r), fill='green') + + +config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' +ckpt_filenmae = "groundingdino_swint_ogc.pth" +sam_checkpoint = 'sam_hq_vit_l.pth' +output_dir = "outputs" +device = 'cuda' if torch.cuda.is_available() else 'cpu' + + +blip_processor = None +blip_model = None +groundingdino_model = None +sam_predictor = None + + +def run_grounded_sam(input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold, hq_token_only): + + global blip_processor, blip_model, groundingdino_model, sam_predictor + + # make dir + os.makedirs(output_dir, exist_ok=True) + # load image + scribble = np.array(input_image["mask"]) + image_pil = input_image["image"].convert("RGB") + transformed_image = transform_image(image_pil) + + if groundingdino_model is None: + groundingdino_model = load_model( + config_file, ckpt_filenmae, device=device) + + if task_type == 'automatic': + # generate caption and tags + # use Tag2Text can generate better captions + # https://huggingface.co./spaces/xinyu1205/Tag2Text + # but there are some bugs... + blip_processor = blip_processor or BlipProcessor.from_pretrained( + "Salesforce/blip-image-captioning-large") + blip_model = blip_model or BlipForConditionalGeneration.from_pretrained( + "Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda") + text_prompt = generate_caption(blip_processor, blip_model, image_pil) + print(f"Caption: {text_prompt}") + + # run grounding dino model + boxes_filt, scores, pred_phrases = get_grounding_output( + groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold + ) + + size = image_pil.size + + # process boxes + H, W = size[1], size[0] + for i in range(boxes_filt.size(0)): + boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) + boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 + boxes_filt[i][2:] += boxes_filt[i][:2] + + boxes_filt = boxes_filt.cpu() + + # nms + print(f"Before NMS: {boxes_filt.shape[0]} boxes") + nms_idx = torchvision.ops.nms( + boxes_filt, scores, iou_threshold).numpy().tolist() + boxes_filt = boxes_filt[nms_idx] + pred_phrases = [pred_phrases[idx] for idx in nms_idx] + print(f"After NMS: {boxes_filt.shape[0]} boxes") + + if sam_predictor is None: + # initialize SAM + assert sam_checkpoint, 'sam_checkpoint is not found!' + sam = build_sam_vit_l(checkpoint=sam_checkpoint) + sam.to(device=device) + sam_predictor = SamPredictor(sam) + + image = np.array(image_pil) + sam_predictor.set_image(image) + + hq_token_only = (hq_token_only=='True') # str2bool + + if task_type == 'automatic': + # use NMS to handle overlapped boxes + print(f"Revise caption with number: {text_prompt}") + + if task_type == 'text' or task_type == 'automatic' or task_type == 'scribble_box': + if task_type == 'scribble_box': + scribble = scribble.transpose(2, 1, 0)[0] + labeled_array, num_features = ndimage.label(scribble >= 255) + centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) + centers = np.array(centers) + ### (x1, y1, x2, y2) + x_min = centers[:, 0].min() + x_max = centers[:, 0].max() + y_min = centers[:, 1].min() + y_max = centers[:, 1].max() + bbox = np.array([x_min, y_min, x_max, y_max]) + bbox = torch.tensor(bbox).unsqueeze(0) + transformed_boxes = sam_predictor.transform.apply_boxes_torch(bbox, image.shape[:2]).to(device) + else: + transformed_boxes = sam_predictor.transform.apply_boxes_torch( + boxes_filt, image.shape[:2]).to(device) + + masks, _, _ = sam_predictor.predict_torch( + point_coords=None, + point_labels=None, + boxes=transformed_boxes, + multimask_output=False, + hq_token_only=hq_token_only, + ) + + # masks: [1, 1, 512, 512] + mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) + mask_draw = ImageDraw.Draw(mask_image) + for mask in masks: + draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True) + image_draw = ImageDraw.Draw(image_pil) + + if task_type == 'scribble_box': + for box in bbox: + draw_box(box, image_draw, None) + else: + for box, label in zip(boxes_filt, pred_phrases): + draw_box(box, image_draw, label) + + if task_type == 'automatic': + image_draw.text((10, 10), text_prompt, fill='black') + + image_pil = image_pil.convert('RGBA') + image_pil.alpha_composite(mask_image) + return [image_pil, mask_image] + + elif task_type == 'scribble_point': + + scribble = scribble.transpose(2, 1, 0)[0] + labeled_array, num_features = ndimage.label(scribble >= 255) + centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) + centers = np.array(centers) + point_coords = centers + point_labels = np.ones(point_coords.shape[0]) + + masks, _, _ = sam_predictor.predict( + point_coords=point_coords, + point_labels=point_labels, + box=None, + multimask_output=False, + hq_token_only=hq_token_only, + ) + + mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) + mask_draw = ImageDraw.Draw(mask_image) + for mask in masks: + draw_mask(mask, mask_draw, random_color=True) + image_draw = ImageDraw.Draw(image_pil) + + draw_point(point_coords,image_draw) + + image_pil = image_pil.convert('RGBA') + image_pil.alpha_composite(mask_image) + return [image_pil, mask_image] + + else: + print("task_type:{} error!".format(task_type)) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) + parser.add_argument("--debug", action="store_true", + help="using debug mode") + parser.add_argument("--share", action="store_true", help="share the app") + parser.add_argument('--no-gradio-queue', action="store_true", + help='path to the SAM checkpoint') + args = parser.parse_args() + + print(args) + + block = gr.Blocks() + if not args.no_gradio_queue: + block = block.queue() + + with block: + gr.Markdown( + """ + # Segment Anything in High Quality + [[`ArXiv`](https://arxiv.org/abs/2306.01567)] + [[`Code`](https://github.com/SysCV/sam-hq)] + Welcome to the SAM-HQ demo
+ You may select different prompt types to get the output mask of target instance. + ## Usage + You may check the instruction below, or check our github page about more details. +
+ You may select an example image or upload your image to start, we support 4 prompt types: + + **text**: Send text prompt to identify the target instance in the `Text prompt` box. + + **scribble_point**: Click an point on the target instance. + + **scribble_box**: Click on two points, the top-left point and the bottom-right point to represent a bounding box of the target instance. + + **automatic**: Automaticly generate text prompt and the corresponding box input. + + In advanced options, we also support a hyper-paramter **hq_token_only**. False means use hq output to correct SAM output. True means use hq output only. Default: False. + + To achieve best visualization effect, for images contain multiple objects (like typical coco images), we suggest to set hq_token_only=False. For images contain single object, we suggest to set hq_token_only = True. + +
+ """) + + with gr.Row(): + with gr.Column(): + input_image = gr.Image( + source='upload', type="pil", value="example1.png", tool="sketch",brush_radius=20) + task_type = gr.Dropdown( + ["text", "scribble_point", "scribble_box", "automatic"], value="text", label="task_type") + text_prompt = gr.Textbox(label="Text Prompt", placeholder="butterfly .") + run_button = gr.Button(label="Run") + with gr.Accordion("Advanced options", open=False): + box_threshold = gr.Slider( + label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 + ) + text_threshold = gr.Slider( + label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 + ) + iou_threshold = gr.Slider( + label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001 + ) + hq_token_only = gr.Dropdown( + [False, True], value=False, label="hq_token_only" + ) + + with gr.Column(): + gallery = gr.Gallery( + label="Generated images", show_label=False, elem_id="gallery" + ).style(preview=True, grid=2, object_fit="scale-down") + with gr.Row(): + with gr.Column(): + gr.Examples(["example0.png"], inputs=input_image) + with gr.Column(): + gr.Examples(["example1.png"], inputs=input_image) + with gr.Column(): + gr.Examples(["example2.png"], inputs=input_image) + with gr.Column(): + gr.Examples(["example3.png"], inputs=input_image) + with gr.Column(): + gr.Examples(["example4.png"], inputs=input_image) + with gr.Column(): + gr.Examples(["example5.png"], inputs=input_image) + with gr.Column(): + gr.Examples(["example6.png"], inputs=input_image) + with gr.Column(): + gr.Examples(["example7.png"], inputs=input_image) + + run_button.click(fn=run_grounded_sam, inputs=[ + input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold, hq_token_only], outputs=gallery) + + block.launch(debug=args.debug, share=args.share, show_error=True) diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..95d2eef42f55d59109c2c9539ef463a7828c54e4 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,21 @@ +addict +diffusers +gradio +huggingface_hub +matplotlib +numpy +onnxruntime +opencv_python +Pillow +pycocotools +PyYAML +requests +setuptools +supervision +termcolor +timm +torch +torchvision +transformers +yapf +scipy diff --git a/sam-hq/LICENSE b/sam-hq/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/sam-hq/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/sam-hq/README.md b/sam-hq/README.md new file mode 100644 index 0000000000000000000000000000000000000000..049cb8fa2790ddd7a8d1fb3bad5a3720d85da31d --- /dev/null +++ b/sam-hq/README.md @@ -0,0 +1,147 @@ +# Segment Anything in High Quality + +> [**Segment Anything in High Quality**](https://arxiv.org/abs/2306.01567) +> Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, Fisher Yu \ +> ETH Zurich & HKUST + +We propose HQ-SAM to upgrade SAM for high-quality zero-shot segmentation. Refer to our [paper](https://arxiv.org/abs/2306.01567) for more details. + +Updates +----------------- +:fire::fire: We released the [colab notebook demo](https://colab.research.google.com/drive/1QwAbn5hsdqKOD5niuBzuqQX4eLCbNKFL?usp=sharing) and [automatic mask generator notebook](https://colab.research.google.com/drive/1dhRq4eR6Fbl-yl1vbQvU9hqyyeOidQaU?usp=sharing). + +:fire::fire: We released the [model checkpoints](#model-checkpoints) and [demo visualization codes](#getting-started). + +Visual comparison between SAM and HQ-SAM +----------------- +**SAM vs. HQ-SAM** + + + + + + + + + + + +
+ +image + +Introduction +----------------- +The recent Segment Anything Model (SAM) represents a big leap in scaling up segmentation models, allowing for powerful zero-shot capabilities and flexible prompting. Despite being trained with 1.1 billion masks, SAM's mask prediction quality falls short in many cases, particularly when dealing with objects that have intricate structures. We propose HQ-SAM, equipping SAM with the ability to accurately segment any object, while maintaining SAM's original promptable design, efficiency, and zero-shot generalizability. Our careful design reuses and preserves the pre-trained model weights of SAM, while only introducing minimal additional parameters and computation. We design a learnable High-Quality Output Token, which is injected into SAM's mask decoder and is responsible for predicting the high-quality mask. Instead of only applying it on mask-decoder features, we first fuse them with early and final ViT features for improved mask details. To train our introduced learnable parameters, we compose a dataset of 44K fine-grained masks from several sources. HQ-SAM is only trained on the introduced detaset of 44k masks, which takes only 4 hours on 8 GPUs. We show the efficacy of HQ-SAM in a suite of 9 diverse segmentation datasets across different downstream tasks, where 7 out of them are evaluated in a zero-shot transfer protocol. + +image + + +Quantitative comparison between SAM and HQ-SAM +----------------- +Note: For box-prompting-based evaluation, we feed SAM and our HQ-SAM with the same image/video bounding boxes and adopt the single mask output mode of SAM. + +### Various ViT backbones on COCO: +![backbones](figs/sam_vs_hqsam_backbones.png) +Note: For the COCO dataset, we use a SOTA detector FocalNet-DINO trained on the COCO dataset as our box prompt generator. + +### YTVIS and HQ-YTVIS +Note:Using ViT-L backbone. We adopt the SOTA detector Mask2Former trained on the YouTubeVIS 2019 dataset as our video boxes prompt generator while reusing its object association prediction. +![ytvis](figs/ytvis.png) + +### DAVIS +Note: Using ViT-L backbone. We adopt the SOTA model XMem as our video boxes prompt generator while reusing its object association prediction. +![davis](figs/davis.png) + + ### Interactive segmentation comparison using various points +Note:Using ViT-L backbone. On the high-quality COIFT (zero-shot) and DIS val set. +![point_comp](figs/points_comp.png) + +### **Installation** +The code requires `python>=3.8`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended. + +Clone the repository locally and install with + +``` +git clone https://github.com/SysCV/sam-hq.git +cd sam-hq; pip install -e . +``` + +The following optional dependencies are necessary for mask post-processing, saving masks in COCO format, the example notebooks, and exporting the model in ONNX format. `jupyter` is also required to run the example notebooks. + +``` +pip install opencv-python pycocotools matplotlib onnxruntime onnx +``` + +### Example conda environment setup +```bash +conda create --name sam_hq python=3.8 -y +conda activate sam_hq +conda install pytorch==1.10.0 torchvision==0.11.0 cudatoolkit=11.1 -c pytorch -c nvidia +pip install opencv-python pycocotools matplotlib onnxruntime onnx + +# under your working directory +git clone https://github.com/SysCV/sam-hq.git +cd sam-hq +pip install -e . +export PYTHONPATH=$(pwd) +``` + +### **Model Checkpoints** + +Three HQ-SAM model versions of the model are available with different backbone sizes. These models can be instantiated by running + +``` +from segment_anything import sam_model_registry +sam = sam_model_registry[""](checkpoint="") +``` + +Download the provided trained model below and put them into the pretrained_checkpoint folder: +``` +mkdir pretrained_checkpoint +``` + +Click the links below to download the checkpoint for the corresponding model type. We also provide **alternative model downloading links** [here](https://github.com/SysCV/sam-hq/issues/5) or at [hugging face](https://huggingface.co./lkeab/hq-sam/tree/main). +- `vit_b`: [ViT-B HQ-SAM model.](https://drive.google.com/file/d/11yExZLOve38kRZPfRx_MRxfIAKmfMY47/view?usp=sharing) +- `vit_l`: [ViT-L HQ-SAM model.](https://drive.google.com/file/d/1Uk17tDKX1YAKas5knI4y9ZJCo0lRVL0G/view?usp=sharing) +- `vit_h`: [ViT-H HQ-SAM model.](https://drive.google.com/file/d/1qobFYrI4eyIANfBSmYcGuWRaSIXfMOQ8/view?usp=sharing) + +### **Getting Started** + +First download a [model checkpoint](#model-checkpoints). Then the model can be used in just a few lines to get masks from a given prompt: + +``` +from segment_anything import SamPredictor, sam_model_registry +sam = sam_model_registry[""](checkpoint="") +predictor = SamPredictor(sam) +predictor.set_image() +masks, _, _ = predictor.predict() +``` + +Additionally, see the usage examples in our [demo](/demo/demo_hqsam.py) , [colab notebook](https://colab.research.google.com/drive/1QwAbn5hsdqKOD5niuBzuqQX4eLCbNKFL?usp=sharing) and [automatic mask generator notebook](https://colab.research.google.com/drive/1dhRq4eR6Fbl-yl1vbQvU9hqyyeOidQaU?usp=sharing). + +To obtain HQ-SAM's visual result: +``` +python demo/demo_hqsam.py +``` + +To obtain baseline SAM's visual result. Note that you need to download original SAM checkpoint from [baseline-SAM-L model](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth) and put it into the pretrained_checkpoint folder. +``` +python demo/demo_sam.py +``` + + +Citation +--------------- +If you find HQ-SAM useful in your research or refer to the provided baseline results, please star :star: this repository and consider citing :pencil:: +``` +@article{sam_hq, + title={Segment Anything in High Quality}, + author={Ke, Lei and Ye, Mingqiao and Danelljan, Martin and Liu, Yifan and Tai, Yu-Wing and Tang, Chi-Keung and Yu, Fisher}, + journal = {arXiv:2306.01567}, + year = {2023} +} +``` + +## Acknowledgments +- Thanks [SAM](https://github.com/facebookresearch/segment-anything) for their public code and released models. diff --git a/sam-hq/segment_anything/__init__.py b/sam-hq/segment_anything/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d5765077c2f040ced187f309717d5233b387ab98 --- /dev/null +++ b/sam-hq/segment_anything/__init__.py @@ -0,0 +1,16 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from .build_sam import ( + build_sam, + build_sam_vit_h, + build_sam_vit_l, + build_sam_vit_b, + sam_model_registry, +) +from .build_sam_baseline import sam_model_registry_baseline +from .predictor import SamPredictor +from .automatic_mask_generator import SamAutomaticMaskGenerator diff --git a/sam-hq/segment_anything/automatic_mask_generator.py b/sam-hq/segment_anything/automatic_mask_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..427ebebd831f848dfff219f695c45302228e449a --- /dev/null +++ b/sam-hq/segment_anything/automatic_mask_generator.py @@ -0,0 +1,374 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms, box_area # type: ignore + +from typing import Any, Dict, List, Optional, Tuple + +from .modeling import Sam +from .predictor import SamPredictor +from .utils.amg import ( + MaskData, + area_from_rle, + batch_iterator, + batched_mask_to_box, + box_xyxy_to_xywh, + build_all_layer_point_grids, + calculate_stability_score, + coco_encode_rle, + generate_crop_boxes, + is_box_near_crop_edge, + mask_to_rle_pytorch, + remove_small_regions, + rle_to_mask, + uncrop_boxes_xyxy, + uncrop_masks, + uncrop_points, +) + + +class SamAutomaticMaskGenerator: + def __init__( + self, + model: Sam, + points_per_side: Optional[int] = 32, + points_per_batch: int = 64, + pred_iou_thresh: float = 0.88, + stability_score_thresh: float = 0.95, + stability_score_offset: float = 1.0, + box_nms_thresh: float = 0.7, + crop_n_layers: int = 0, + crop_nms_thresh: float = 0.7, + crop_overlap_ratio: float = 512 / 1500, + crop_n_points_downscale_factor: int = 1, + point_grids: Optional[List[np.ndarray]] = None, + min_mask_region_area: int = 0, + output_mode: str = "binary_mask", + ) -> None: + """ + Using a SAM model, generates masks for the entire image. + Generates a grid of point prompts over the image, then filters + low quality and duplicate masks. The default settings are chosen + for SAM with a ViT-H backbone. + + Arguments: + model (Sam): The SAM model to use for mask prediction. + points_per_side (int or None): The number of points to be sampled + along one side of the image. The total number of points is + points_per_side**2. If None, 'point_grids' must provide explicit + point sampling. + points_per_batch (int): Sets the number of points run simultaneously + by the model. Higher numbers may be faster but use more GPU memory. + pred_iou_thresh (float): A filtering threshold in [0,1], using the + model's predicted mask quality. + stability_score_thresh (float): A filtering threshold in [0,1], using + the stability of the mask under changes to the cutoff used to binarize + the model's mask predictions. + stability_score_offset (float): The amount to shift the cutoff when + calculated the stability score. + box_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks. + crop_n_layers (int): If >0, mask prediction will be run again on + crops of the image. Sets the number of layers to run, where each + layer has 2**i_layer number of image crops. + crop_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks between different crops. + crop_overlap_ratio (float): Sets the degree to which crops overlap. + In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + crop_n_points_downscale_factor (int): The number of points-per-side + sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + point_grids (list(np.ndarray) or None): A list over explicit grids + of points used for sampling, normalized to [0,1]. The nth grid in the + list is used in the nth crop layer. Exclusive with points_per_side. + min_mask_region_area (int): If >0, postprocessing will be applied + to remove disconnected regions and holes in masks with area smaller + than min_mask_region_area. Requires opencv. + output_mode (str): The form masks are returned in. Can be 'binary_mask', + 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. + For large resolutions, 'binary_mask' may consume large amounts of + memory. + """ + + assert (points_per_side is None) != ( + point_grids is None + ), "Exactly one of points_per_side or point_grid must be provided." + if points_per_side is not None: + self.point_grids = build_all_layer_point_grids( + points_per_side, + crop_n_layers, + crop_n_points_downscale_factor, + ) + elif point_grids is not None: + self.point_grids = point_grids + else: + raise ValueError("Can't have both points_per_side and point_grid be None.") + + assert output_mode in [ + "binary_mask", + "uncompressed_rle", + "coco_rle", + ], f"Unknown output_mode {output_mode}." + if output_mode == "coco_rle": + from pycocotools import mask as mask_utils # type: ignore # noqa: F401 + + if min_mask_region_area > 0: + import cv2 # type: ignore # noqa: F401 + + self.predictor = SamPredictor(model) + self.points_per_batch = points_per_batch + self.pred_iou_thresh = pred_iou_thresh + self.stability_score_thresh = stability_score_thresh + self.stability_score_offset = stability_score_offset + self.box_nms_thresh = box_nms_thresh + self.crop_n_layers = crop_n_layers + self.crop_nms_thresh = crop_nms_thresh + self.crop_overlap_ratio = crop_overlap_ratio + self.crop_n_points_downscale_factor = crop_n_points_downscale_factor + self.min_mask_region_area = min_mask_region_area + self.output_mode = output_mode + + @torch.no_grad() + def generate(self, image: np.ndarray, multimask_output: bool = True) -> List[Dict[str, Any]]: + """ + Generates masks for the given image. + + Arguments: + image (np.ndarray): The image to generate masks for, in HWC uint8 format. + + Returns: + list(dict(str, any)): A list over records for masks. Each record is + a dict containing the following keys: + segmentation (dict(str, any) or np.ndarray): The mask. If + output_mode='binary_mask', is an array of shape HW. Otherwise, + is a dictionary containing the RLE. + bbox (list(float)): The box around the mask, in XYWH format. + area (int): The area in pixels of the mask. + predicted_iou (float): The model's own prediction of the mask's + quality. This is filtered by the pred_iou_thresh parameter. + point_coords (list(list(float))): The point coordinates input + to the model to generate this mask. + stability_score (float): A measure of the mask's quality. This + is filtered on using the stability_score_thresh parameter. + crop_box (list(float)): The crop of the image used to generate + the mask, given in XYWH format. + """ + + # Generate masks + mask_data = self._generate_masks(image, multimask_output) + + # Filter small disconnected regions and holes in masks + if self.min_mask_region_area > 0: + mask_data = self.postprocess_small_regions( + mask_data, + self.min_mask_region_area, + max(self.box_nms_thresh, self.crop_nms_thresh), + ) + + # Encode masks + if self.output_mode == "coco_rle": + mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]] + elif self.output_mode == "binary_mask": + mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] + else: + mask_data["segmentations"] = mask_data["rles"] + + # Write mask records + curr_anns = [] + for idx in range(len(mask_data["segmentations"])): + ann = { + "segmentation": mask_data["segmentations"][idx], + "area": area_from_rle(mask_data["rles"][idx]), + "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), + "predicted_iou": mask_data["iou_preds"][idx].item(), + "point_coords": [mask_data["points"][idx].tolist()], + "stability_score": mask_data["stability_score"][idx].item(), + "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), + } + curr_anns.append(ann) + + return curr_anns + + def _generate_masks(self, image: np.ndarray, multimask_output: bool = True) -> MaskData: + orig_size = image.shape[:2] + crop_boxes, layer_idxs = generate_crop_boxes( + orig_size, self.crop_n_layers, self.crop_overlap_ratio + ) + + # Iterate over image crops + data = MaskData() + for crop_box, layer_idx in zip(crop_boxes, layer_idxs): + crop_data = self._process_crop(image, crop_box, layer_idx, orig_size, multimask_output) + data.cat(crop_data) + + # Remove duplicate masks between crops + if len(crop_boxes) > 1: + # Prefer masks from smaller crops + scores = 1 / box_area(data["crop_boxes"]) + scores = scores.to(data["boxes"].device) + keep_by_nms = batched_nms( + data["boxes"].float(), + scores, + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.crop_nms_thresh, + ) + data.filter(keep_by_nms) + + data.to_numpy() + return data + + def _process_crop( + self, + image: np.ndarray, + crop_box: List[int], + crop_layer_idx: int, + orig_size: Tuple[int, ...], + multimask_output: bool = True, + ) -> MaskData: + # Crop the image and calculate embeddings + x0, y0, x1, y1 = crop_box + cropped_im = image[y0:y1, x0:x1, :] + cropped_im_size = cropped_im.shape[:2] + self.predictor.set_image(cropped_im) + + # Get points for this crop + points_scale = np.array(cropped_im_size)[None, ::-1] + points_for_image = self.point_grids[crop_layer_idx] * points_scale + + # Generate masks for this crop in batches + data = MaskData() + for (points,) in batch_iterator(self.points_per_batch, points_for_image): + batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size, multimask_output) + data.cat(batch_data) + del batch_data + self.predictor.reset_image() + + # Remove duplicates within this crop. + keep_by_nms = batched_nms( + data["boxes"].float(), + data["iou_preds"], + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.box_nms_thresh, + ) + data.filter(keep_by_nms) + + # Return to the original image frame + data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) + data["points"] = uncrop_points(data["points"], crop_box) + data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) + + return data + + def _process_batch( + self, + points: np.ndarray, + im_size: Tuple[int, ...], + crop_box: List[int], + orig_size: Tuple[int, ...], + multimask_output: bool = True, + ) -> MaskData: + orig_h, orig_w = orig_size + + # Run model on this batch + transformed_points = self.predictor.transform.apply_coords(points, im_size) + in_points = torch.as_tensor(transformed_points, device=self.predictor.device) + in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) + masks, iou_preds, _ = self.predictor.predict_torch( + in_points[:, None, :], + in_labels[:, None], + multimask_output=multimask_output, + return_logits=True, + ) + + # Serialize predictions and store in MaskData + data = MaskData( + masks=masks.flatten(0, 1), + iou_preds=iou_preds.flatten(0, 1), + points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), + ) + del masks + + # Filter by predicted IoU + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + # Calculate stability score + data["stability_score"] = calculate_stability_score( + data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + + # Threshold masks and calculate boxes + data["masks"] = data["masks"] > self.predictor.model.mask_threshold + data["boxes"] = batched_mask_to_box(data["masks"]) + + # Filter boxes that touch crop boundaries + keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h]) + if not torch.all(keep_mask): + data.filter(keep_mask) + + # Compress to RLE + data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) + data["rles"] = mask_to_rle_pytorch(data["masks"]) + del data["masks"] + + return data + + @staticmethod + def postprocess_small_regions( + mask_data: MaskData, min_area: int, nms_thresh: float + ) -> MaskData: + """ + Removes small disconnected regions and holes in masks, then reruns + box NMS to remove any new duplicates. + + Edits mask_data in place. + + Requires open-cv as a dependency. + """ + if len(mask_data["rles"]) == 0: + return mask_data + + # Filter small disconnected regions and holes + new_masks = [] + scores = [] + for rle in mask_data["rles"]: + mask = rle_to_mask(rle) + + mask, changed = remove_small_regions(mask, min_area, mode="holes") + unchanged = not changed + mask, changed = remove_small_regions(mask, min_area, mode="islands") + unchanged = unchanged and not changed + + new_masks.append(torch.as_tensor(mask).unsqueeze(0)) + # Give score=0 to changed masks and score=1 to unchanged masks + # so NMS will prefer ones that didn't need postprocessing + scores.append(float(unchanged)) + + # Recalculate boxes and remove any new duplicates + masks = torch.cat(new_masks, dim=0) + boxes = batched_mask_to_box(masks) + keep_by_nms = batched_nms( + boxes.float(), + torch.as_tensor(scores), + torch.zeros_like(boxes[:, 0]), # categories + iou_threshold=nms_thresh, + ) + + # Only recalculate RLEs for masks that have changed + for i_mask in keep_by_nms: + if scores[i_mask] == 0.0: + mask_torch = masks[i_mask].unsqueeze(0) + mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] + mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly + mask_data.filter(keep_by_nms) + + return mask_data diff --git a/sam-hq/segment_anything/build_sam.py b/sam-hq/segment_anything/build_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..b280cf4d7efcc90f66e1835ed9f83b3f605e24f4 --- /dev/null +++ b/sam-hq/segment_anything/build_sam.py @@ -0,0 +1,113 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch + +from functools import partial + +from .modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer + + +def build_sam_vit_h(checkpoint=None): + return _build_sam( + encoder_embed_dim=1280, + encoder_depth=32, + encoder_num_heads=16, + encoder_global_attn_indexes=[7, 15, 23, 31], + checkpoint=checkpoint, + ) + + +build_sam = build_sam_vit_h + + +def build_sam_vit_l(checkpoint=None): + return _build_sam( + encoder_embed_dim=1024, + encoder_depth=24, + encoder_num_heads=16, + encoder_global_attn_indexes=[5, 11, 17, 23], + checkpoint=checkpoint, + ) + + +def build_sam_vit_b(checkpoint=None): + return _build_sam( + encoder_embed_dim=768, + encoder_depth=12, + encoder_num_heads=12, + encoder_global_attn_indexes=[2, 5, 8, 11], + checkpoint=checkpoint, + ) + + +sam_model_registry = { + "default": build_sam_vit_h, + "vit_h": build_sam_vit_h, + "vit_l": build_sam_vit_l, + "vit_b": build_sam_vit_b, +} + + +def _build_sam( + encoder_embed_dim, + encoder_depth, + encoder_num_heads, + encoder_global_attn_indexes, + checkpoint=None, +): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + sam = Sam( + image_encoder=ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ), + prompt_encoder=PromptEncoder( + embed_dim=prompt_embed_dim, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(image_size, image_size), + mask_in_chans=16, + ), + mask_decoder=MaskDecoderHQ( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + vit_dim=encoder_embed_dim, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + # sam.eval() + if checkpoint is not None: + with open(checkpoint, "rb") as f: + state_dict = torch.load(f) + info = sam.load_state_dict(state_dict, strict=False) + print(info) + for n, p in sam.named_parameters(): + if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n: + p.requires_grad = False + + return sam diff --git a/sam-hq/segment_anything/build_sam_baseline.py b/sam-hq/segment_anything/build_sam_baseline.py new file mode 100644 index 0000000000000000000000000000000000000000..8f1497025922ae25cabe1e3fb03363e86870feec --- /dev/null +++ b/sam-hq/segment_anything/build_sam_baseline.py @@ -0,0 +1,107 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch + +from functools import partial + +from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer + + +def build_sam_vit_h(checkpoint=None): + return _build_sam( + encoder_embed_dim=1280, + encoder_depth=32, + encoder_num_heads=16, + encoder_global_attn_indexes=[7, 15, 23, 31], + checkpoint=checkpoint, + ) + + +build_sam = build_sam_vit_h + + +def build_sam_vit_l(checkpoint=None): + return _build_sam( + encoder_embed_dim=1024, + encoder_depth=24, + encoder_num_heads=16, + encoder_global_attn_indexes=[5, 11, 17, 23], + checkpoint=checkpoint, + ) + + +def build_sam_vit_b(checkpoint=None): + return _build_sam( + encoder_embed_dim=768, + encoder_depth=12, + encoder_num_heads=12, + encoder_global_attn_indexes=[2, 5, 8, 11], + checkpoint=checkpoint, + ) + + +sam_model_registry_baseline = { + "default": build_sam_vit_h, + "vit_h": build_sam_vit_h, + "vit_l": build_sam_vit_l, + "vit_b": build_sam_vit_b, +} + + +def _build_sam( + encoder_embed_dim, + encoder_depth, + encoder_num_heads, + encoder_global_attn_indexes, + checkpoint=None, +): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + sam = Sam( + image_encoder=ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ), + prompt_encoder=PromptEncoder( + embed_dim=prompt_embed_dim, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(image_size, image_size), + mask_in_chans=16, + ), + mask_decoder=MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + sam.eval() + if checkpoint is not None: + with open(checkpoint, "rb") as f: + state_dict = torch.load(f) + sam.load_state_dict(state_dict) + return sam \ No newline at end of file diff --git a/sam-hq/segment_anything/modeling/__init__.py b/sam-hq/segment_anything/modeling/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..71172d22345eff1f3729c6326299feee17717ccc --- /dev/null +++ b/sam-hq/segment_anything/modeling/__init__.py @@ -0,0 +1,12 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from .sam import Sam +from .image_encoder import ImageEncoderViT +from .mask_decoder_hq import MaskDecoderHQ +from .mask_decoder import MaskDecoder +from .prompt_encoder import PromptEncoder +from .transformer import TwoWayTransformer diff --git a/sam-hq/segment_anything/modeling/common.py b/sam-hq/segment_anything/modeling/common.py new file mode 100644 index 0000000000000000000000000000000000000000..2bf15236a3eb24d8526073bc4fa2b274cccb3f96 --- /dev/null +++ b/sam-hq/segment_anything/modeling/common.py @@ -0,0 +1,43 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn + +from typing import Type + + +class MLPBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + mlp_dim: int, + act: Type[nn.Module] = nn.GELU, + ) -> None: + super().__init__() + self.lin1 = nn.Linear(embedding_dim, mlp_dim) + self.lin2 = nn.Linear(mlp_dim, embedding_dim) + self.act = act() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.lin2(self.act(self.lin1(x))) + + +# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa +# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x diff --git a/sam-hq/segment_anything/modeling/image_encoder.py b/sam-hq/segment_anything/modeling/image_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..7048651eb05d44bb427601be26963d6232ce812a --- /dev/null +++ b/sam-hq/segment_anything/modeling/image_encoder.py @@ -0,0 +1,398 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from typing import Optional, Tuple, Type + +from .common import LayerNorm2d, MLPBlock + + +# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa +class ImageEncoderViT(nn.Module): + def __init__( + self, + img_size: int = 1024, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4.0, + out_chans: int = 256, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_abs_pos: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + global_attn_indexes: Tuple[int, ...] = (), + ) -> None: + """ + Args: + img_size (int): Input image size. + patch_size (int): Patch size. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + depth (int): Depth of ViT. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_abs_pos (bool): If True, use absolute positional embeddings. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. + global_attn_indexes (list): Indexes for blocks using global attention. + """ + super().__init__() + self.img_size = img_size + + self.patch_embed = PatchEmbed( + kernel_size=(patch_size, patch_size), + stride=(patch_size, patch_size), + in_chans=in_chans, + embed_dim=embed_dim, + ) + + self.pos_embed: Optional[nn.Parameter] = None + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter( + torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) + ) + + self.blocks = nn.ModuleList() + for i in range(depth): + block = Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + act_layer=act_layer, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + window_size=window_size if i not in global_attn_indexes else 0, + input_size=(img_size // patch_size, img_size // patch_size), + ) + self.blocks.append(block) + + self.neck = nn.Sequential( + nn.Conv2d( + embed_dim, + out_chans, + kernel_size=1, + bias=False, + ), + LayerNorm2d(out_chans), + nn.Conv2d( + out_chans, + out_chans, + kernel_size=3, + padding=1, + bias=False, + ), + LayerNorm2d(out_chans), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + self.pos_embed + + interm_embeddings=[] + for blk in self.blocks: + x = blk(x) + if blk.window_size == 0: + interm_embeddings.append(x) + + x = self.neck(x.permute(0, 3, 1, 2)) + + return x, interm_embeddings + + +class Block(nn.Module): + """Transformer blocks with support of window attention and residual propagation blocks""" + + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. If it equals 0, then + use global attention. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + input_size=input_size if window_size == 0 else (window_size, window_size), + ) + + self.norm2 = norm_layer(dim) + self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) + + self.window_size = window_size + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + # Window partition + if self.window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, self.window_size) + + x = self.attn(x) + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, pad_hw, (H, W)) + + x = shortcut + x + x = x + self.mlp(self.norm2(x)) + + return x + + +class Attention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert ( + input_size is not None + ), "Input size must be provided if using relative positional encoding." + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (3, B, nHead, H * W, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + # q, k, v with shape (B * nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) + + attn = (q * self.scale) @ k.transpose(-2, -1) + + if self.use_rel_pos: + attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) + + attn = attn.softmax(dim=-1) + x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) + x = self.proj(x) + + return x + + +def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows, (Hp, Wp) + + +def window_unpartition( + windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] +) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + +def add_decomposed_rel_pos( + attn: torch.Tensor, + q: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], +) -> torch.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 + Args: + attn (Tensor): attention map. + q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). + rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. + rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. + q_size (Tuple): spatial sequence size of query q with (q_h, q_w). + k_size (Tuple): spatial sequence size of key k with (k_h, k_w). + + Returns: + attn (Tensor): attention map with added relative positional embeddings. + """ + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) + rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) + + attn = ( + attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] + ).view(B, q_h * q_w, k_h * k_w) + + return attn + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, int] = (16, 16), + stride: Tuple[int, int] = (16, 16), + padding: Tuple[int, int] = (0, 0), + in_chans: int = 3, + embed_dim: int = 768, + ) -> None: + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + """ + super().__init__() + + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/sam-hq/segment_anything/modeling/mask_decoder.py b/sam-hq/segment_anything/modeling/mask_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..242ecb769555913252ee8d60cdc88af5d1cdfb16 --- /dev/null +++ b/sam-hq/segment_anything/modeling/mask_decoder.py @@ -0,0 +1,178 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import nn +from torch.nn import functional as F + +from typing import List, Tuple, Type + +from .common import LayerNorm2d + + +class MaskDecoder(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), + activation(), + ) + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth + ) + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + hq_token_only: bool, + interm_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + """ + masks, iou_pred = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + ) + + # Select the correct mask or masks for output + if multimask_output: + mask_slice = slice(1, None) + else: + mask_slice = slice(0, 1) + masks = masks[:, mask_slice, :, :] + iou_pred = iou_pred[:, mask_slice] + + # Prepare output + return masks, iou_pred + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) + output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # Expand per-image data in batch direction to be per-mask + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + src = src + dense_prompt_embeddings + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, 0, :] + mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + upscaled_embedding = self.output_upscaling(src) + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) + + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + + return masks, iou_pred + + +# Lightly adapted from +# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x diff --git a/sam-hq/segment_anything/modeling/mask_decoder_hq.py b/sam-hq/segment_anything/modeling/mask_decoder_hq.py new file mode 100644 index 0000000000000000000000000000000000000000..1e365e33a0a34290645309a7df69acb51636fd41 --- /dev/null +++ b/sam-hq/segment_anything/modeling/mask_decoder_hq.py @@ -0,0 +1,232 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# Modified by HQ-SAM team +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import nn +from torch.nn import functional as F + +from typing import List, Tuple, Type + +from .common import LayerNorm2d + + +class MaskDecoderHQ(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + vit_dim: int = 1024, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), + activation(), + ) + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth + ) + + # HQ-SAM parameters + self.hf_token = nn.Embedding(1, transformer_dim) # HQ-Ouptput-Token + self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) # corresponding new MLP layer for HQ-Ouptput-Token + self.num_mask_tokens = self.num_mask_tokens + 1 + + # three conv fusion layers for obtaining HQ-Feature + self.compress_vit_feat = nn.Sequential( + nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2), + LayerNorm2d(transformer_dim), + nn.GELU(), + nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2)) + + self.embedding_encoder = nn.Sequential( + nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), + LayerNorm2d(transformer_dim // 4), + nn.GELU(), + nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), + ) + self.embedding_maskfeature = nn.Sequential( + nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1), + LayerNorm2d(transformer_dim // 4), + nn.GELU(), + nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1)) + + + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + hq_token_only: bool, + interm_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the ViT image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + """ + vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT + hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features) + + masks, iou_pred = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + hq_features=hq_features, + ) + + # Select the correct mask or masks for output + if multimask_output: + # mask with highest score + mask_slice = slice(1,self.num_mask_tokens-1) + iou_pred = iou_pred[:, mask_slice] + iou_pred, max_iou_idx = torch.max(iou_pred,dim=1) + iou_pred = iou_pred.unsqueeze(1) + masks_multi = masks[:, mask_slice, :, :] + masks_sam = masks_multi[torch.arange(masks_multi.size(0)),max_iou_idx].unsqueeze(1) + else: + # singale mask output, default + mask_slice = slice(0, 1) + iou_pred = iou_pred[:,mask_slice] + masks_sam = masks[:,mask_slice] + + masks_hq = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens)] + if hq_token_only: + masks = masks_hq + else: + masks = masks_sam + masks_hq + # Prepare output + return masks, iou_pred + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + hq_features: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0) + output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # Expand per-image data in batch direction to be per-mask + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + src = src + dense_prompt_embeddings + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, 0, :] + mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + + upscaled_embedding_sam = self.output_upscaling(src) + upscaled_embedding_hq = self.embedding_maskfeature(upscaled_embedding_sam) + hq_features.repeat(b,1,1,1) + + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + if i < self.num_mask_tokens - 1: + hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) + else: + hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :])) + + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding_sam.shape + + masks_sam = (hyper_in[:,:self.num_mask_tokens-1] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w) + masks_sam_hq = (hyper_in[:,self.num_mask_tokens-1:] @ upscaled_embedding_hq.view(b, c, h * w)).view(b, -1, h, w) + masks = torch.cat([masks_sam,masks_sam_hq],dim=1) + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + + return masks, iou_pred + + +# Lightly adapted from +# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x diff --git a/sam-hq/segment_anything/modeling/prompt_encoder.py b/sam-hq/segment_anything/modeling/prompt_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..c3143f4f8e02ddd7ca8587b40ff5d47c3a6b7ef3 --- /dev/null +++ b/sam-hq/segment_anything/modeling/prompt_encoder.py @@ -0,0 +1,214 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from torch import nn + +from typing import Any, Optional, Tuple, Type + +from .common import LayerNorm2d + + +class PromptEncoder(nn.Module): + def __init__( + self, + embed_dim: int, + image_embedding_size: Tuple[int, int], + input_image_size: Tuple[int, int], + mask_in_chans: int, + activation: Type[nn.Module] = nn.GELU, + ) -> None: + """ + Encodes prompts for input to SAM's mask decoder. + + Arguments: + embed_dim (int): The prompts' embedding dimension + image_embedding_size (tuple(int, int)): The spatial size of the + image embedding, as (H, W). + input_image_size (int): The padded size of the image as input + to the image encoder, as (H, W). + mask_in_chans (int): The number of hidden channels used for + encoding input masks. + activation (nn.Module): The activation to use when encoding + input masks. + """ + super().__init__() + self.embed_dim = embed_dim + self.input_image_size = input_image_size + self.image_embedding_size = image_embedding_size + self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) + + self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners + point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] + self.point_embeddings = nn.ModuleList(point_embeddings) + self.not_a_point_embed = nn.Embedding(1, embed_dim) + + self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) + self.mask_downscaling = nn.Sequential( + nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans // 4), + activation(), + nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans), + activation(), + nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), + ) + self.no_mask_embed = nn.Embedding(1, embed_dim) + + def get_dense_pe(self) -> torch.Tensor: + """ + Returns the positional encoding used to encode point prompts, + applied to a dense set of points the shape of the image encoding. + + Returns: + torch.Tensor: Positional encoding with shape + 1x(embed_dim)x(embedding_h)x(embedding_w) + """ + return self.pe_layer(self.image_embedding_size).unsqueeze(0) + + def _embed_points( + self, + points: torch.Tensor, + labels: torch.Tensor, + pad: bool, + ) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) + padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) + points = torch.cat([points, padding_point], dim=1) + labels = torch.cat([labels, padding_label], dim=1) + point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) + point_embedding[labels == -1] = 0.0 + point_embedding[labels == -1] += self.not_a_point_embed.weight + point_embedding[labels == 0] += self.point_embeddings[0].weight + point_embedding[labels == 1] += self.point_embeddings[1].weight + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + coords = boxes.reshape(-1, 2, 2) + corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) + corner_embedding[:, 0, :] += self.point_embeddings[2].weight + corner_embedding[:, 1, :] += self.point_embeddings[3].weight + return corner_embedding + + def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: + """Embeds mask inputs.""" + mask_embedding = self.mask_downscaling(masks) + return mask_embedding + + def _get_batch_size( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> int: + """ + Gets the batch size of the output given the batch size of the input prompts. + """ + if points is not None: + return points[0].shape[0] + elif boxes is not None: + return boxes.shape[0] + elif masks is not None: + return masks.shape[0] + else: + return 1 + + def _get_device(self) -> torch.device: + return self.point_embeddings[0].weight.device + + def forward( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense + embeddings. + + Arguments: + points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates + and labels to embed. + boxes (torch.Tensor or none): boxes to embed + masks (torch.Tensor or none): masks to embed + + Returns: + torch.Tensor: sparse embeddings for the points and boxes, with shape + BxNx(embed_dim), where N is determined by the number of input points + and boxes. + torch.Tensor: dense embeddings for the masks, in the shape + Bx(embed_dim)x(embed_H)x(embed_W) + """ + bs = self._get_batch_size(points, boxes, masks) + sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) + if points is not None: + coords, labels = points + point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) + sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) + if boxes is not None: + box_embeddings = self._embed_boxes(boxes) + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) + + if masks is not None: + dense_embeddings = self._embed_masks(masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( + bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] + ) + + return sparse_embeddings, dense_embeddings + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + "positional_encoding_gaussian_matrix", + scale * torch.randn((2, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones((h, w), device=device, dtype=torch.float32) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / h + x_embed = x_embed / w + + pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) + return pe.permute(2, 0, 1) # C x H x W + + def forward_with_coords( + self, coords_input: torch.Tensor, image_size: Tuple[int, int] + ) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[1] + coords[:, :, 1] = coords[:, :, 1] / image_size[0] + return self._pe_encoding(coords.to(torch.float)) # B x N x C diff --git a/sam-hq/segment_anything/modeling/sam.py b/sam-hq/segment_anything/modeling/sam.py new file mode 100644 index 0000000000000000000000000000000000000000..b928dfd40507b059908ef8676ac35b90779366ad --- /dev/null +++ b/sam-hq/segment_anything/modeling/sam.py @@ -0,0 +1,177 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import nn +from torch.nn import functional as F + +from typing import Any, Dict, List, Tuple + +from .image_encoder import ImageEncoderViT +from .mask_decoder import MaskDecoder +from .prompt_encoder import PromptEncoder + + +class Sam(nn.Module): + mask_threshold: float = 0.0 + image_format: str = "RGB" + + def __init__( + self, + image_encoder: ImageEncoderViT, + prompt_encoder: PromptEncoder, + mask_decoder: MaskDecoder, + pixel_mean: List[float] = [123.675, 116.28, 103.53], + pixel_std: List[float] = [58.395, 57.12, 57.375], + ) -> None: + """ + SAM predicts object masks from an image and input prompts. + + Arguments: + image_encoder (ImageEncoderViT): The backbone used to encode the + image into image embeddings that allow for efficient mask prediction. + prompt_encoder (PromptEncoder): Encodes various types of input prompts. + mask_decoder (MaskDecoder): Predicts masks from the image embeddings + and encoded prompts. + pixel_mean (list(float)): Mean values for normalizing pixels in the input image. + pixel_std (list(float)): Std values for normalizing pixels in the input image. + """ + super().__init__() + self.image_encoder = image_encoder + self.prompt_encoder = prompt_encoder + self.mask_decoder = mask_decoder + self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) + self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) + + @property + def device(self) -> Any: + return self.pixel_mean.device + + def forward( + self, + batched_input: List[Dict[str, Any]], + multimask_output: bool, + hq_token_only: bool =False, + ) -> List[Dict[str, torch.Tensor]]: + """ + Predicts masks end-to-end from provided images and prompts. + If prompts are not known in advance, using SamPredictor is + recommended over calling the model directly. + + Arguments: + batched_input (list(dict)): A list over input images, each a + dictionary with the following keys. A prompt key can be + excluded if it is not present. + 'image': The image as a torch tensor in 3xHxW format, + already transformed for input to the model. + 'original_size': (tuple(int, int)) The original size of + the image before transformation, as (H, W). + 'point_coords': (torch.Tensor) Batched point prompts for + this image, with shape BxNx2. Already transformed to the + input frame of the model. + 'point_labels': (torch.Tensor) Batched labels for point prompts, + with shape BxN. + 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. + Already transformed to the input frame of the model. + 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, + in the form Bx1xHxW. + multimask_output (bool): Whether the model should predict multiple + disambiguating masks, or return a single mask. + + Returns: + (list(dict)): A list over input images, where each element is + as dictionary with the following keys. + 'masks': (torch.Tensor) Batched binary mask predictions, + with shape BxCxHxW, where B is the number of input prompts, + C is determined by multimask_output, and (H, W) is the + original size of the image. + 'iou_predictions': (torch.Tensor) The model's predictions + of mask quality, in shape BxC. + 'low_res_logits': (torch.Tensor) Low resolution logits with + shape BxCxHxW, where H=W=256. Can be passed as mask input + to subsequent iterations of prediction. + """ + input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) + image_embeddings, interm_embeddings = self.image_encoder(input_images) + interm_embeddings = interm_embeddings[0] # early layer + + outputs = [] + for image_record, curr_embedding, curr_interm in zip(batched_input, image_embeddings, interm_embeddings): + if "point_coords" in image_record: + points = (image_record["point_coords"], image_record["point_labels"]) + else: + points = None + sparse_embeddings, dense_embeddings = self.prompt_encoder( + points=points, + boxes=image_record.get("boxes", None), + masks=image_record.get("mask_inputs", None), + ) + low_res_masks, iou_predictions = self.mask_decoder( + image_embeddings=curr_embedding.unsqueeze(0), + image_pe=self.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + hq_token_only=hq_token_only, + interm_embeddings=curr_interm.unsqueeze(0).unsqueeze(0), + ) + masks = self.postprocess_masks( + low_res_masks, + input_size=image_record["image"].shape[-2:], + original_size=image_record["original_size"], + ) + masks = masks > self.mask_threshold + outputs.append( + { + "masks": masks, + "iou_predictions": iou_predictions, + "low_res_logits": low_res_masks, + } + ) + return outputs + + def postprocess_masks( + self, + masks: torch.Tensor, + input_size: Tuple[int, ...], + original_size: Tuple[int, ...], + ) -> torch.Tensor: + """ + Remove padding and upscale masks to the original image size. + + Arguments: + masks (torch.Tensor): Batched masks from the mask_decoder, + in BxCxHxW format. + input_size (tuple(int, int)): The size of the image input to the + model, in (H, W) format. Used to remove padding. + original_size (tuple(int, int)): The original size of the image + before resizing for input to the model, in (H, W) format. + + Returns: + (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) + is given by original_size. + """ + masks = F.interpolate( + masks, + (self.image_encoder.img_size, self.image_encoder.img_size), + mode="bilinear", + align_corners=False, + ) + masks = masks[..., : input_size[0], : input_size[1]] + masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) + return masks + + def preprocess(self, x: torch.Tensor) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + # Normalize colors + x = (x - self.pixel_mean) / self.pixel_std + + # Pad + h, w = x.shape[-2:] + padh = self.image_encoder.img_size - h + padw = self.image_encoder.img_size - w + x = F.pad(x, (0, padw, 0, padh)) + return x diff --git a/sam-hq/segment_anything/modeling/transformer.py b/sam-hq/segment_anything/modeling/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..28fafea52288603fea275f3a100790471825c34a --- /dev/null +++ b/sam-hq/segment_anything/modeling/transformer.py @@ -0,0 +1,240 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import Tensor, nn + +import math +from typing import Tuple, Type + +from .common import MLPBlock + + +class TwoWayTransformer(nn.Module): + def __init__( + self, + depth: int, + embedding_dim: int, + num_heads: int, + mlp_dim: int, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + ) -> None: + """ + A transformer decoder that attends to an input image using + queries whose positional embedding is supplied. + + Args: + depth (int): number of layers in the transformer + embedding_dim (int): the channel dimension for the input embeddings + num_heads (int): the number of heads for multihead attention. Must + divide embedding_dim + mlp_dim (int): the channel dimension internal to the MLP block + activation (nn.Module): the activation to use in the MLP block + """ + super().__init__() + self.depth = depth + self.embedding_dim = embedding_dim + self.num_heads = num_heads + self.mlp_dim = mlp_dim + self.layers = nn.ModuleList() + + for i in range(depth): + self.layers.append( + TwoWayAttentionBlock( + embedding_dim=embedding_dim, + num_heads=num_heads, + mlp_dim=mlp_dim, + activation=activation, + attention_downsample_rate=attention_downsample_rate, + skip_first_layer_pe=(i == 0), + ) + ) + + self.final_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm_final_attn = nn.LayerNorm(embedding_dim) + + def forward( + self, + image_embedding: Tensor, + image_pe: Tensor, + point_embedding: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + image_embedding (torch.Tensor): image to attend to. Should be shape + B x embedding_dim x h x w for any h and w. + image_pe (torch.Tensor): the positional encoding to add to the image. Must + have the same shape as image_embedding. + point_embedding (torch.Tensor): the embedding to add to the query points. + Must have shape B x N_points x embedding_dim for any N_points. + + Returns: + torch.Tensor: the processed point_embedding + torch.Tensor: the processed image_embedding + """ + # BxCxHxW -> BxHWxC == B x N_image_tokens x C + bs, c, h, w = image_embedding.shape + image_embedding = image_embedding.flatten(2).permute(0, 2, 1) + image_pe = image_pe.flatten(2).permute(0, 2, 1) + + # Prepare queries + queries = point_embedding + keys = image_embedding + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys = layer( + queries=queries, + keys=keys, + query_pe=point_embedding, + key_pe=image_pe, + ) + + # Apply the final attention layer from the points to the image + q = queries + point_embedding + k = keys + image_pe + attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm_final_attn(queries) + + return queries, keys + + +class TwoWayAttentionBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + num_heads: int, + mlp_dim: int = 2048, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + skip_first_layer_pe: bool = False, + ) -> None: + """ + A transformer block with four layers: (1) self-attention of sparse + inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp + block on sparse inputs, and (4) cross attention of dense inputs to sparse + inputs. + + Arguments: + embedding_dim (int): the channel dimension of the embeddings + num_heads (int): the number of heads in the attention layers + mlp_dim (int): the hidden dimension of the mlp block + activation (nn.Module): the activation of the mlp block + skip_first_layer_pe (bool): skip the PE on the first layer + """ + super().__init__() + self.self_attn = Attention(embedding_dim, num_heads) + self.norm1 = nn.LayerNorm(embedding_dim) + + self.cross_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm2 = nn.LayerNorm(embedding_dim) + + self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) + self.norm3 = nn.LayerNorm(embedding_dim) + + self.norm4 = nn.LayerNorm(embedding_dim) + self.cross_attn_image_to_token = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward( + self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor + ) -> Tuple[Tensor, Tensor]: + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(q=queries, k=queries, v=queries) + else: + q = queries + query_pe + attn_out = self.self_attn(q=q, k=q, v=queries) + queries = queries + attn_out + queries = self.norm1(queries) + + # Cross attention block, tokens attending to image embedding + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.norm3(queries) + + # Cross attention block, image embedding attending to tokens + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) + keys = keys + attn_out + keys = self.norm4(keys) + + return queries, keys + + +class Attention(nn.Module): + """ + An attention layer that allows for downscaling the size of the embedding + after projection to queries, keys, and values. + """ + + def __init__( + self, + embedding_dim: int, + num_heads: int, + downsample_rate: int = 1, + ) -> None: + super().__init__() + self.embedding_dim = embedding_dim + self.internal_dim = embedding_dim // downsample_rate + self.num_heads = num_heads + assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." + + self.q_proj = nn.Linear(embedding_dim, self.internal_dim) + self.k_proj = nn.Linear(embedding_dim, self.internal_dim) + self.v_proj = nn.Linear(embedding_dim, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, embedding_dim) + + def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: + b, n, c = x.shape + x = x.reshape(b, n, num_heads, c // num_heads) + return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head + + def _recombine_heads(self, x: Tensor) -> Tensor: + b, n_heads, n_tokens, c_per_head = x.shape + x = x.transpose(1, 2) + return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + # Attention + _, _, _, c_per_head = q.shape + attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens + attn = attn / math.sqrt(c_per_head) + attn = torch.softmax(attn, dim=-1) + + # Get output + out = attn @ v + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out diff --git a/sam-hq/segment_anything/predictor.py b/sam-hq/segment_anything/predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..31458fbe31d92947896a662c0664c2e83def44e1 --- /dev/null +++ b/sam-hq/segment_anything/predictor.py @@ -0,0 +1,276 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch + +from .modeling import Sam + +from typing import Optional, Tuple + +from .utils.transforms import ResizeLongestSide + + +class SamPredictor: + def __init__( + self, + sam_model: Sam, + ) -> None: + """ + Uses SAM to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + sam_model (Sam): The model to use for mask prediction. + """ + super().__init__() + self.model = sam_model + self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) + self.reset_image() + + def set_image( + self, + image: np.ndarray, + image_format: str = "RGB", + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in [ + "RGB", + "BGR", + ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." + # import pdb;pdb.set_trace() + if image_format != self.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + # import pdb;pdb.set_trace() + input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(input_image, device=self.device) + input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] + + self.set_torch_image(input_image_torch, image.shape[:2]) + + @torch.no_grad() + def set_torch_image( + self, + transformed_image: torch.Tensor, + original_image_size: Tuple[int, ...], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + assert ( + len(transformed_image.shape) == 4 + and transformed_image.shape[1] == 3 + and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size + ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + input_image = self.model.preprocess(transformed_image) + self.features, self.interm_features = self.model.image_encoder(input_image) + self.is_image_set = True + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + hq_token_only: bool =False, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + # Transform input prompts + coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = self.transform.apply_coords(point_coords, self.original_size) + coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) + labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) + coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] + if box is not None: + box = self.transform.apply_boxes(box, self.original_size) + box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) + box_torch = box_torch[None, :] + if mask_input is not None: + mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) + mask_input_torch = mask_input_torch[None, :, :, :] + + masks, iou_predictions, low_res_masks = self.predict_torch( + coords_torch, + labels_torch, + box_torch, + mask_input_torch, + multimask_output, + return_logits=return_logits, + hq_token_only=hq_token_only, + ) + + masks_np = masks[0].detach().cpu().numpy() + iou_predictions_np = iou_predictions[0].detach().cpu().numpy() + low_res_masks_np = low_res_masks[0].detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + @torch.no_grad() + def predict_torch( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + hq_token_only: bool =False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using ResizeLongestSide. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + if point_coords is not None: + points = (point_coords, point_labels) + else: + points = None + + # Embed prompts + sparse_embeddings, dense_embeddings = self.model.prompt_encoder( + points=points, + boxes=boxes, + masks=mask_input, + ) + + # Predict masks + low_res_masks, iou_predictions = self.model.mask_decoder( + image_embeddings=self.features, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + hq_token_only=hq_token_only, + interm_embeddings=self.interm_features, + ) + + # Upscale the masks to the original image resolution + masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) + + if not return_logits: + masks = masks > self.model.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert self.features is not None, "Features must exist if an image has been set." + return self.features + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_image(self) -> None: + """Resets the currently set image.""" + self.is_image_set = False + self.features = None + self.orig_h = None + self.orig_w = None + self.input_h = None + self.input_w = None diff --git a/sam-hq/segment_anything/utils/__init__.py b/sam-hq/segment_anything/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/sam-hq/segment_anything/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/sam-hq/segment_anything/utils/amg.py b/sam-hq/segment_anything/utils/amg.py new file mode 100644 index 0000000000000000000000000000000000000000..be064071ef399fea96c673ad173689656c23534a --- /dev/null +++ b/sam-hq/segment_anything/utils/amg.py @@ -0,0 +1,346 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch + +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, Generator, ItemsView, List, Tuple + + +class MaskData: + """ + A structure for storing masks and their related data in batched format. + Implements basic filtering and concatenation. + """ + + def __init__(self, **kwargs) -> None: + for v in kwargs.values(): + assert isinstance( + v, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats = dict(**kwargs) + + def __setitem__(self, key: str, item: Any) -> None: + assert isinstance( + item, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats[key] = item + + def __delitem__(self, key: str) -> None: + del self._stats[key] + + def __getitem__(self, key: str) -> Any: + return self._stats[key] + + def items(self) -> ItemsView[str, Any]: + return self._stats.items() + + def filter(self, keep: torch.Tensor) -> None: + for k, v in self._stats.items(): + if v is None: + self._stats[k] = None + elif isinstance(v, torch.Tensor): + self._stats[k] = v[torch.as_tensor(keep, device=v.device)] + elif isinstance(v, np.ndarray): + self._stats[k] = v[keep.detach().cpu().numpy()] + elif isinstance(v, list) and keep.dtype == torch.bool: + self._stats[k] = [a for i, a in enumerate(v) if keep[i]] + elif isinstance(v, list): + self._stats[k] = [v[i] for i in keep] + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def cat(self, new_stats: "MaskData") -> None: + for k, v in new_stats.items(): + if k not in self._stats or self._stats[k] is None: + self._stats[k] = deepcopy(v) + elif isinstance(v, torch.Tensor): + self._stats[k] = torch.cat([self._stats[k], v], dim=0) + elif isinstance(v, np.ndarray): + self._stats[k] = np.concatenate([self._stats[k], v], axis=0) + elif isinstance(v, list): + self._stats[k] = self._stats[k] + deepcopy(v) + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def to_numpy(self) -> None: + for k, v in self._stats.items(): + if isinstance(v, torch.Tensor): + self._stats[k] = v.detach().cpu().numpy() + + +def is_box_near_crop_edge( + boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 +) -> torch.Tensor: + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + boxes = uncrop_boxes_xyxy(boxes, crop_box).float() + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + assert len(args) > 0 and all( + len(a) == len(args[0]) for a in args + ), "Batched iteration must have inputs of all the same size." + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] + + +def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: + """ + Encodes masks to an uncompressed RLE, in the format expected by + pycoco tools. + """ + # Put in fortran order and flatten h,w + b, h, w = tensor.shape + tensor = tensor.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = tensor[:, 1:] ^ tensor[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(b): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + cur_idxs = torch.cat( + [ + torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), + cur_idxs + 1, + torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), + ] + ) + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if tensor[i, 0] == 0 else [0] + counts.extend(btw_idxs.detach().cpu().tolist()) + out.append({"size": [h, w], "counts": counts}) + return out + + +def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + h, w = rle["size"] + mask = np.empty(h * w, dtype=bool) + idx = 0 + parity = False + for count in rle["counts"]: + mask[idx : idx + count] = parity + idx += count + parity ^= True + mask = mask.reshape(w, h) + return mask.transpose() # Put in C order + + +def area_from_rle(rle: Dict[str, Any]) -> int: + return sum(rle["counts"][1::2]) + + +def calculate_stability_score( + masks: torch.Tensor, mask_threshold: float, threshold_offset: float +) -> torch.Tensor: + """ + Computes the stability score for a batch of masks. The stability + score is the IoU between the binary masks obtained by thresholding + the predicted mask logits at high and low values. + """ + # One mask is always contained inside the other. + # Save memory by preventing unnecessary cast to torch.int64 + intersections = ( + (masks > (mask_threshold + threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + unions = ( + (masks > (mask_threshold - threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + return intersections / unions + + +def build_point_grid(n_per_side: int) -> np.ndarray: + """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + return points + + +def build_all_layer_point_grids( + n_per_side: int, n_layers: int, scale_per_layer: int +) -> List[np.ndarray]: + """Generates point grids for all crop layers.""" + points_by_layer = [] + for i in range(n_layers + 1): + n_points = int(n_per_side / (scale_per_layer**i)) + points_by_layer.append(build_point_grid(n_points)) + return points_by_layer + + +def generate_crop_boxes( + im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float +) -> Tuple[List[List[int]], List[int]]: + """ + Generates a list of crop boxes of different sizes. Each layer + has (2**i)**2 boxes for the ith layer. + """ + crop_boxes, layer_idxs = [], [] + im_h, im_w = im_size + short_side = min(im_h, im_w) + + # Original image + crop_boxes.append([0, 0, im_w, im_h]) + layer_idxs.append(0) + + def crop_len(orig_len, n_crops, overlap): + return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) + + for i_layer in range(n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_w = crop_len(im_w, n_crops_per_side, overlap) + crop_h = crop_len(im_h, n_crops_per_side, overlap) + + crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] + + # Crops in XYWH format + for x0, y0 in product(crop_box_x0, crop_box_y0): + box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + return boxes + offset + + +def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0]], device=points.device) + # Check if points has a channel dimension + if len(points.shape) == 3: + offset = offset.unsqueeze(1) + return points + offset + + +def uncrop_masks( + masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int +) -> torch.Tensor: + x0, y0, x1, y1 = crop_box + if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) + pad = (x0, pad_x - x0, y0, pad_y - y0) + return torch.nn.functional.pad(masks, pad, value=0) + + +def remove_small_regions( + mask: np.ndarray, area_thresh: float, mode: str +) -> Tuple[np.ndarray, bool]: + """ + Removes small disconnected regions and holes in a mask. Returns the + mask and an indicator of if the mask has been modified. + """ + import cv2 # type: ignore + + assert mode in ["holes", "islands"] + correct_holes = mode == "holes" + working_mask = (correct_holes ^ mask).astype(np.uint8) + n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) + sizes = stats[:, -1][1:] # Row 0 is background label + small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] + if len(small_regions) == 0: + return mask, False + fill_labels = [0] + small_regions + if not correct_holes: + fill_labels = [i for i in range(n_labels) if i not in fill_labels] + # If every region is below threshold, keep largest + if len(fill_labels) == 0: + fill_labels = [int(np.argmax(sizes)) + 1] + mask = np.isin(regions, fill_labels) + return mask, True + + +def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: + from pycocotools import mask as mask_utils # type: ignore + + h, w = uncompressed_rle["size"] + rle = mask_utils.frPyObjects(uncompressed_rle, h, w) + rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json + return rle + + +def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: + """ + Calculates boxes in XYXY format around masks. Return [0,0,0,0] for + an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. + """ + # torch.max below raises an error on empty inputs, just skip in this case + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to CxHxW + shape = masks.shape + h, w = shape[-2:] + if len(shape) > 2: + masks = masks.flatten(0, -3) + else: + masks = masks.unsqueeze(0) + + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + h * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + w * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + if len(shape) > 2: + out = out.reshape(*shape[:-2], 4) + else: + out = out[0] + + return out diff --git a/sam-hq/segment_anything/utils/onnx.py b/sam-hq/segment_anything/utils/onnx.py new file mode 100644 index 0000000000000000000000000000000000000000..3196bdf4b782e6eeb3da4ad66ef3c7b1741535fe --- /dev/null +++ b/sam-hq/segment_anything/utils/onnx.py @@ -0,0 +1,144 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from typing import Tuple + +from ..modeling import Sam +from .amg import calculate_stability_score + + +class SamOnnxModel(nn.Module): + """ + This model should not be called directly, but is used in ONNX export. + It combines the prompt encoder, mask decoder, and mask postprocessing of Sam, + with some functions modified to enable model tracing. Also supports extra + options controlling what information. See the ONNX export script for details. + """ + + def __init__( + self, + model: Sam, + return_single_mask: bool, + use_stability_score: bool = False, + return_extra_metrics: bool = False, + ) -> None: + super().__init__() + self.mask_decoder = model.mask_decoder + self.model = model + self.img_size = model.image_encoder.img_size + self.return_single_mask = return_single_mask + self.use_stability_score = use_stability_score + self.stability_score_offset = 1.0 + self.return_extra_metrics = return_extra_metrics + + @staticmethod + def resize_longest_image_size( + input_image_size: torch.Tensor, longest_side: int + ) -> torch.Tensor: + input_image_size = input_image_size.to(torch.float32) + scale = longest_side / torch.max(input_image_size) + transformed_size = scale * input_image_size + transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64) + return transformed_size + + def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor: + point_coords = point_coords + 0.5 + point_coords = point_coords / self.img_size + point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords) + point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding) + + point_embedding = point_embedding * (point_labels != -1) + point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * ( + point_labels == -1 + ) + + for i in range(self.model.prompt_encoder.num_point_embeddings): + point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[ + i + ].weight * (point_labels == i) + + return point_embedding + + def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor: + mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask) + mask_embedding = mask_embedding + ( + 1 - has_mask_input + ) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1) + return mask_embedding + + def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor: + masks = F.interpolate( + masks, + size=(self.img_size, self.img_size), + mode="bilinear", + align_corners=False, + ) + + prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size).to(torch.int64) + masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore + + orig_im_size = orig_im_size.to(torch.int64) + h, w = orig_im_size[0], orig_im_size[1] + masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False) + return masks + + def select_masks( + self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int + ) -> Tuple[torch.Tensor, torch.Tensor]: + # Determine if we should return the multiclick mask or not from the number of points. + # The reweighting is used to avoid control flow. + score_reweight = torch.tensor( + [[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)] + ).to(iou_preds.device) + score = iou_preds + (num_points - 2.5) * score_reweight + best_idx = torch.argmax(score, dim=1) + masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1) + iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1) + + return masks, iou_preds + + @torch.no_grad() + def forward( + self, + image_embeddings: torch.Tensor, + point_coords: torch.Tensor, + point_labels: torch.Tensor, + mask_input: torch.Tensor, + has_mask_input: torch.Tensor, + orig_im_size: torch.Tensor, + ): + sparse_embedding = self._embed_points(point_coords, point_labels) + dense_embedding = self._embed_masks(mask_input, has_mask_input) + + masks, scores = self.model.mask_decoder.predict_masks( + image_embeddings=image_embeddings, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embedding, + dense_prompt_embeddings=dense_embedding, + ) + + if self.use_stability_score: + scores = calculate_stability_score( + masks, self.model.mask_threshold, self.stability_score_offset + ) + + if self.return_single_mask: + masks, scores = self.select_masks(masks, scores, point_coords.shape[1]) + + upscaled_masks = self.mask_postprocessing(masks, orig_im_size) + + if self.return_extra_metrics: + stability_scores = calculate_stability_score( + upscaled_masks, self.model.mask_threshold, self.stability_score_offset + ) + areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1) + return upscaled_masks, scores, stability_scores, areas, masks + + return upscaled_masks, scores, masks diff --git a/sam-hq/segment_anything/utils/transforms.py b/sam-hq/segment_anything/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..c08ba1e3db751f3a5483a003be38c69c2cf2df85 --- /dev/null +++ b/sam-hq/segment_anything/utils/transforms.py @@ -0,0 +1,102 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from torch.nn import functional as F +from torchvision.transforms.functional import resize, to_pil_image # type: ignore + +from copy import deepcopy +from typing import Tuple + + +class ResizeLongestSide: + """ + Resizes images to the longest side 'target_length', as well as provides + methods for resizing coordinates and boxes. Provides methods for + transforming both numpy array and batched torch tensors. + """ + + def __init__(self, target_length: int) -> None: + self.target_length = target_length + + def apply_image(self, image: np.ndarray) -> np.ndarray: + """ + Expects a numpy array with shape HxWxC in uint8 format. + """ + target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) + return np.array(resize(to_pil_image(image), target_size)) + + def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: + """ + Expects a numpy array of length 2 in the final dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape( + original_size[0], original_size[1], self.target_length + ) + coords = deepcopy(coords).astype(float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: + """ + Expects a numpy array shape Bx4. Requires the original image size + in (H, W) format. + """ + boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: + """ + Expects batched images with shape BxCxHxW and float format. This + transformation may not exactly match apply_image. apply_image is + the transformation expected by the model. + """ + # Expects an image in BCHW format. May not exactly match apply_image. + target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length) + return F.interpolate( + image, target_size, mode="bilinear", align_corners=False, antialias=True + ) + + def apply_coords_torch( + self, coords: torch.Tensor, original_size: Tuple[int, ...] + ) -> torch.Tensor: + """ + Expects a torch tensor with length 2 in the last dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape( + original_size[0], original_size[1], self.target_length + ) + coords = deepcopy(coords).to(torch.float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes_torch( + self, boxes: torch.Tensor, original_size: Tuple[int, ...] + ) -> torch.Tensor: + """ + Expects a torch tensor with shape Bx4. Requires the original image + size in (H, W) format. + """ + boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + @staticmethod + def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: + """ + Compute the output size given input size and target long side length. + """ + scale = long_side_length * 1.0 / max(oldh, oldw) + newh, neww = oldh * scale, oldw * scale + neww = int(neww + 0.5) + newh = int(newh + 0.5) + return (newh, neww) diff --git a/sam-hq/setup.cfg b/sam-hq/setup.cfg new file mode 100644 index 0000000000000000000000000000000000000000..0eee130ba71d14ec260d33a8ebd96a6491079a54 --- /dev/null +++ b/sam-hq/setup.cfg @@ -0,0 +1,11 @@ +[isort] +line_length=100 +multi_line_output=3 +include_trailing_comma=True +known_standard_library=numpy,setuptools +skip_glob=*/__init__.py +known_myself=segment_anything +known_third_party=matplotlib,cv2,torch,torchvision,pycocotools,onnx,black,isort +no_lines_before=STDLIB,THIRDPARTY +sections=FUTURE,STDLIB,THIRDPARTY,MYSELF,FIRSTPARTY,LOCALFOLDER +default_section=FIRSTPARTY diff --git a/sam-hq/setup.py b/sam-hq/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..2c0986317eb576a14ec774205c88fdee3cc6c0b3 --- /dev/null +++ b/sam-hq/setup.py @@ -0,0 +1,18 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from setuptools import find_packages, setup + +setup( + name="segment_anything", + version="1.0", + install_requires=[], + packages=find_packages(exclude="notebooks"), + extras_require={ + "all": ["matplotlib", "pycocotools", "opencv-python", "onnx", "onnxruntime"], + "dev": ["flake8", "isort", "black", "mypy"], + }, +)