import streamlit as st from huggingface_hub import InferenceClient from gtts import gTTS import IPython.display as ipd client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_prompt = "Tu nombre es Xaman 3.0" system_prompt_sent = False def format_prompt(message, history): global system_prompt_sent prompt = "" if history is not None and isinstance(history, list): if not any(f"[INST] {system_prompt} [/INST]" in user_prompt for user_prompt, _ in history): prompt += f"[INST] {system_prompt} [/INST]" system_prompt_sent = True for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def text_to_speech(text): tts = gTTS(text=text, lang='es') tts.save('output.mp3') return 'output.mp3' def generate( user_input, history, temperature=None, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, ): global system_prompt_sent temperature = float(temperature) if temperature is not None else 0.9 if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(user_input, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text st.text(output) ipd.Audio(text_to_speech(output), autoplay=True) return output user_input = st.text_input(label="Usuario", value="Escribe aquí tu mensaje") output = generate(user_input, history=None) # Ajusta 'history' según sea necesario