xaman / app.py
salomonsky's picture
Update app.py
d843813 verified
raw
history blame
3.36 kB
import streamlit as st
import speech_recognition as sr
from pydub import AudioSegment
from pydub.playback import play
from io import BytesIO
from time import sleep
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_prompt = "Tu nombre es Chaman 3.0 una IA conductual"
system_prompt_sent = False
def format_prompt(message, history):
global system_prompt_sent
prompt = "<s>"
if history is not None and isinstance(history, list):
if not any(f"[INST] {system_prompt} [/INST]" in user_prompt for user_prompt, _ in history):
prompt += f"[INST] {system_prompt} [/INST]"
system_prompt_sent = True
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def text_to_speech(text, speed=2.0):
tts = gTTS(text=text, lang='es')
audio_file_path = BytesIO()
tts.write_to_fp(audio_file_path)
return audio_file_path
def generate_with_progress(
user_input, history, temperature=None, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0,
):
global system_prompt_sent
temperature = float(temperature) if temperature is not None else 0.9
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(user_input, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
response = ""
total_tokens = 0
for response_token in stream:
response += response_token.token.text
total_tokens += 1
st.subheader("Generando respuesta...")
st.progress(total_tokens / max_new_tokens)
response = ' '.join(response.split()).replace('</s>', '')
return response
if "history" not in st.session_state:
st.session_state.history = []
recognizer = sr.Recognizer()
while True:
with st.spinner("Escuchando..."):
try:
with sr.Microphone() as source:
audio_data = recognizer.listen(source, timeout=5)
st.success("Audio capturado con éxito.")
text = recognizer.recognize_google(audio_data, language="es-ES")
st.success(f"Texto reconocido: {text}")
st.subheader("Generando respuesta...")
st.progress(0.0)
output = generate_with_progress(text, history=st.session_state.history)
st.session_state.history.append((text, output))
st.success("Respuesta generada con éxito.")
st.subheader("Reproduciendo respuesta...")
audio_file_path = text_to_speech(output)
play(audio_file_path)
for progress_value in range(0, 101, 10):
st.progress(progress_value / 100)
sleep(0.5)
except sr.UnknownValueError:
st.warning("No se pudo reconocer el habla.")
except sr.RequestError as e:
st.error(f"Error en la solicitud al servicio de reconocimiento de voz: {e}")
break