Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import enum | |
import gradio as gr | |
from huggingface_hub import HfApi | |
from inference import InferencePipeline | |
from utils import find_exp_dirs | |
SAMPLE_MODEL_IDS = [ | |
'patrickvonplaten/lora_dreambooth_dog_example', | |
'sayakpaul/sd-model-finetuned-lora-t4', | |
] | |
class ModelSource(enum.Enum): | |
SAMPLE = 'Sample' | |
HUB_LIB = 'Hub (lora-library)' | |
LOCAL = 'Local' | |
class InferenceUtil: | |
def __init__(self, hf_token: str | None): | |
self.hf_token = hf_token | |
def load_sample_lora_model_list(): | |
return gr.update(choices=SAMPLE_MODEL_IDS, value=SAMPLE_MODEL_IDS[0]) | |
def load_hub_lora_model_list(self) -> dict: | |
api = HfApi(token=self.hf_token) | |
choices = [ | |
info.modelId for info in api.list_models(author='lora-library') | |
] | |
return gr.update(choices=choices, | |
value=choices[0] if choices else None) | |
def load_local_lora_model_list() -> dict: | |
choices = find_exp_dirs() | |
return gr.update(choices=choices, | |
value=choices[0] if choices else None) | |
def reload_lora_model_list(self, model_source: str) -> dict: | |
if model_source == ModelSource.SAMPLE.value: | |
return self.load_sample_lora_model_list() | |
elif model_source == ModelSource.HUB_LIB.value: | |
return self.load_hub_lora_model_list() | |
elif model_source == ModelSource.LOCAL.value: | |
return self.load_local_lora_model_list() | |
else: | |
raise ValueError | |
def load_model_info(self, lora_model_id: str) -> tuple[str, str]: | |
try: | |
card = InferencePipeline.get_model_card(lora_model_id, | |
self.hf_token) | |
except Exception: | |
return '', '' | |
base_model = getattr(card.data, 'base_model', '') | |
instance_prompt = getattr(card.data, 'instance_prompt', '') | |
return base_model, instance_prompt | |
def reload_lora_model_list_and_update_model_info( | |
self, model_source: str) -> tuple[dict, str, str]: | |
model_list_update = self.reload_lora_model_list(model_source) | |
model_list = model_list_update['choices'] | |
model_info = self.load_model_info(model_list[0] if model_list else '') | |
return model_list_update, *model_info | |
def create_inference_demo(pipe: InferencePipeline, | |
hf_token: str | None = None) -> gr.Blocks: | |
app = InferenceUtil(hf_token) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Box(): | |
model_source = gr.Radio( | |
label='Model Source', | |
choices=[_.value for _ in ModelSource], | |
value=ModelSource.SAMPLE.value) | |
reload_button = gr.Button('Reload Model List') | |
lora_model_id = gr.Dropdown(label='LoRA Model ID', | |
choices=SAMPLE_MODEL_IDS, | |
value=SAMPLE_MODEL_IDS[0]) | |
with gr.Accordion( | |
label= | |
'Model info (Base model and instance prompt used for training)', | |
open=False): | |
with gr.Row(): | |
base_model_used_for_training = gr.Text( | |
label='Base model', interactive=False) | |
instance_prompt_used_for_training = gr.Text( | |
label='Instance prompt', interactive=False) | |
prompt = gr.Textbox( | |
label='Prompt', | |
max_lines=1, | |
placeholder='Example: "A picture of a sks dog in a bucket"' | |
) | |
alpha = gr.Slider(label='LoRA alpha', | |
minimum=0, | |
maximum=2, | |
step=0.05, | |
value=1) | |
seed = gr.Slider(label='Seed', | |
minimum=0, | |
maximum=100000, | |
step=1, | |
value=0) | |
with gr.Accordion('Other Parameters', open=False): | |
num_steps = gr.Slider(label='Number of Steps', | |
minimum=0, | |
maximum=100, | |
step=1, | |
value=25) | |
guidance_scale = gr.Slider(label='CFG Scale', | |
minimum=0, | |
maximum=50, | |
step=0.1, | |
value=7.5) | |
run_button = gr.Button('Generate') | |
gr.Markdown(''' | |
- After training, you can press "Reload Model List" button to load your trained model names. | |
''') | |
with gr.Column(): | |
result = gr.Image(label='Result') | |
model_source.change( | |
fn=app.reload_lora_model_list_and_update_model_info, | |
inputs=model_source, | |
outputs=[ | |
lora_model_id, | |
base_model_used_for_training, | |
instance_prompt_used_for_training, | |
]) | |
reload_button.click( | |
fn=app.reload_lora_model_list_and_update_model_info, | |
inputs=model_source, | |
outputs=[ | |
lora_model_id, | |
base_model_used_for_training, | |
instance_prompt_used_for_training, | |
]) | |
lora_model_id.change(fn=app.load_model_info, | |
inputs=lora_model_id, | |
outputs=[ | |
base_model_used_for_training, | |
instance_prompt_used_for_training, | |
]) | |
inputs = [ | |
lora_model_id, | |
prompt, | |
alpha, | |
seed, | |
num_steps, | |
guidance_scale, | |
] | |
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result) | |
run_button.click(fn=pipe.run, inputs=inputs, outputs=result) | |
return demo | |
if __name__ == '__main__': | |
import os | |
hf_token = os.getenv('HF_TOKEN') | |
pipe = InferencePipeline(hf_token) | |
demo = create_inference_demo(pipe, hf_token) | |
demo.queue(max_size=10).launch(share=False) | |