train / inference.py
hysts's picture
hysts HF staff
Duplicate from hysts/LoRA-SD-training
b083a19
raw
history blame
3.05 kB
from __future__ import annotations
import gc
import pathlib
import sys
import gradio as gr
import PIL.Image
import torch
from diffusers import StableDiffusionPipeline
sys.path.insert(0, 'lora')
from lora_diffusion import monkeypatch_lora, tune_lora_scale
class InferencePipeline:
def __init__(self):
self.pipe = None
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.weight_path = None
def clear(self) -> None:
self.weight_path = None
del self.pipe
self.pipe = None
torch.cuda.empty_cache()
gc.collect()
@staticmethod
def get_lora_weight_path(name: str) -> pathlib.Path:
curr_dir = pathlib.Path(__file__).parent
return curr_dir / name
@staticmethod
def get_lora_text_encoder_weight_path(path: pathlib.Path) -> str:
parent_dir = path.parent
stem = path.stem
text_encoder_filename = f'{stem}.text_encoder.pt'
path = parent_dir / text_encoder_filename
return path.as_posix() if path.exists() else ''
def load_pipe(self, model_id: str, lora_filename: str) -> None:
weight_path = self.get_lora_weight_path(lora_filename)
if weight_path == self.weight_path:
return
self.weight_path = weight_path
lora_weight = torch.load(self.weight_path, map_location=self.device)
if self.device.type == 'cpu':
pipe = StableDiffusionPipeline.from_pretrained(model_id)
else:
pipe = StableDiffusionPipeline.from_pretrained(
model_id, torch_dtype=torch.float16)
pipe = pipe.to(self.device)
monkeypatch_lora(pipe.unet, lora_weight)
lora_text_encoder_weight_path = self.get_lora_text_encoder_weight_path(
weight_path)
if lora_text_encoder_weight_path:
lora_text_encoder_weight = torch.load(
lora_text_encoder_weight_path, map_location=self.device)
monkeypatch_lora(pipe.text_encoder,
lora_text_encoder_weight,
target_replace_module=['CLIPAttention'])
self.pipe = pipe
def run(
self,
base_model: str,
lora_weight_name: str,
prompt: str,
alpha: float,
alpha_for_text: float,
seed: int,
n_steps: int,
guidance_scale: float,
) -> PIL.Image.Image:
if not torch.cuda.is_available():
raise gr.Error('CUDA is not available.')
self.load_pipe(base_model, lora_weight_name)
generator = torch.Generator(device=self.device).manual_seed(seed)
tune_lora_scale(self.pipe.unet, alpha) # type: ignore
tune_lora_scale(self.pipe.text_encoder, alpha_for_text) # type: ignore
out = self.pipe(prompt,
num_inference_steps=n_steps,
guidance_scale=guidance_scale,
generator=generator) # type: ignore
return out.images[0]