Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,107 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
-
#import gradio.helpers
|
3 |
import torch
|
4 |
import os
|
5 |
from glob import glob
|
6 |
from pathlib import Path
|
7 |
from typing import Optional
|
8 |
-
|
9 |
from diffusers import StableVideoDiffusionPipeline
|
10 |
from diffusers.utils import load_image, export_to_video
|
11 |
from PIL import Image
|
12 |
-
|
13 |
import uuid
|
14 |
import random
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
-
import spaces
|
17 |
-
|
18 |
-
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
19 |
-
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
20 |
-
)
|
21 |
-
pipe.to("cuda")
|
22 |
|
23 |
max_64_bit_int = 2**63 - 1
|
24 |
-
|
|
|
25 |
@spaces.GPU(duration=120)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
randomize_seed:
|
30 |
-
motion_bucket_id: int = 127,
|
31 |
-
fps_id: int = 6,
|
32 |
-
version: str = "svd_xt",
|
33 |
-
cond_aug: float = 0.02,
|
34 |
-
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
35 |
-
device: str = "cuda",
|
36 |
-
output_folder: str = "outputs",
|
37 |
-
):
|
38 |
-
if image.mode == "RGBA":
|
39 |
-
image = image.convert("RGB")
|
40 |
-
|
41 |
-
if(randomize_seed):
|
42 |
-
seed = random.randint(0, max_64_bit_int)
|
43 |
generator = torch.manual_seed(seed)
|
44 |
-
|
45 |
os.makedirs(output_folder, exist_ok=True)
|
46 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
47 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
48 |
-
|
49 |
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
50 |
export_to_video(frames, video_path, fps=fps_id)
|
51 |
torch.manual_seed(seed)
|
52 |
-
|
53 |
return video_path, frames, seed
|
54 |
|
55 |
def resize_image(image, output_size=(1024, 576)):
|
56 |
-
|
57 |
-
|
58 |
-
image_aspect = image.width / image.height # Aspect ratio of the original image
|
59 |
-
|
60 |
-
# Resize then crop if the original image is larger
|
61 |
if image_aspect > target_aspect:
|
62 |
-
# Resize the image to match the target height, maintaining aspect ratio
|
63 |
new_height = output_size[1]
|
64 |
new_width = int(new_height * image_aspect)
|
65 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
66 |
-
# Calculate coordinates for cropping
|
67 |
left = (new_width - output_size[0]) / 2
|
68 |
top = 0
|
69 |
right = (new_width + output_size[0]) / 2
|
70 |
bottom = output_size[1]
|
71 |
else:
|
72 |
-
# Resize the image to match the target width, maintaining aspect ratio
|
73 |
new_width = output_size[0]
|
74 |
new_height = int(new_width / image_aspect)
|
75 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
76 |
-
# Calculate coordinates for cropping
|
77 |
left = 0
|
78 |
top = (new_height - output_size[1]) / 2
|
79 |
right = output_size[0]
|
80 |
bottom = (new_height + output_size[1]) / 2
|
81 |
-
|
82 |
-
# Crop the image
|
83 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
84 |
return cropped_image
|
85 |
|
86 |
with gr.Blocks() as demo:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
gallery = gr.Gallery(label="Generated frames")
|
102 |
-
|
103 |
-
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
104 |
-
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
demo.launch(share=True, show_api=False)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
from glob import glob
|
5 |
from pathlib import Path
|
6 |
from typing import Optional
|
|
|
7 |
from diffusers import StableVideoDiffusionPipeline
|
8 |
from diffusers.utils import load_image, export_to_video
|
9 |
from PIL import Image
|
|
|
10 |
import uuid
|
11 |
import random
|
12 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
max_64_bit_int = 2**63 - 1
|
15 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained("vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16")
|
16 |
+
pipe.to("cuda")
|
17 |
@spaces.GPU(duration=120)
|
18 |
+
|
19 |
+
def sample(image, seed=42, randomize_seed=True, motion_bucket_id=127, fps_id=6, version="svd_xt", cond_aug=0.02, decoding_t=3, device="cuda", output_folder="outputs"):
|
20 |
+
if image.mode == "RGBA": image = image.convert("RGB")
|
21 |
+
if randomize_seed: seed = random.randint(0, max_64_bit_int)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
generator = torch.manual_seed(seed)
|
|
|
23 |
os.makedirs(output_folder, exist_ok=True)
|
24 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
25 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
|
|
26 |
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
27 |
export_to_video(frames, video_path, fps=fps_id)
|
28 |
torch.manual_seed(seed)
|
|
|
29 |
return video_path, frames, seed
|
30 |
|
31 |
def resize_image(image, output_size=(1024, 576)):
|
32 |
+
target_aspect = output_size[0] / output_size[1]
|
33 |
+
image_aspect = image.width / image.height
|
|
|
|
|
|
|
34 |
if image_aspect > target_aspect:
|
|
|
35 |
new_height = output_size[1]
|
36 |
new_width = int(new_height * image_aspect)
|
37 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
38 |
left = (new_width - output_size[0]) / 2
|
39 |
top = 0
|
40 |
right = (new_width + output_size[0]) / 2
|
41 |
bottom = output_size[1]
|
42 |
else:
|
|
|
43 |
new_width = output_size[0]
|
44 |
new_height = int(new_width / image_aspect)
|
45 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
46 |
left = 0
|
47 |
top = (new_height - output_size[1]) / 2
|
48 |
right = output_size[0]
|
49 |
bottom = (new_height + output_size[1]) / 2
|
|
|
|
|
50 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
51 |
return cropped_image
|
52 |
|
53 |
with gr.Blocks() as demo:
|
54 |
+
with gr.Row():
|
55 |
+
with gr.Column():
|
56 |
+
image = gr.Image(label="Upload your image", type="pil")
|
57 |
+
with gr.Accordion("Advanced options", open=False):
|
58 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
59 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
60 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", value=127, minimum=1, maximum=255)
|
61 |
+
fps_id = gr.Slider(label="Frames per second", value=6, minimum=5, maximum=30)
|
62 |
+
generate_btn = gr.Button(value="Animate", variant="primary")
|
63 |
+
with gr.Column():
|
64 |
+
video = gr.Video(label="Generated video")
|
65 |
+
gallery = gr.Gallery(label="Generated frames")
|
66 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
67 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
|
|
|
|
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
demo.launch(share=True, show_api=False)
|