Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
#import gradio.helpers
|
3 |
import torch
|
4 |
import os
|
5 |
from glob import glob
|
6 |
from pathlib import Path
|
7 |
from typing import Optional
|
8 |
-
|
9 |
from diffusers import StableVideoDiffusionPipeline
|
10 |
from diffusers.utils import load_image, export_to_video
|
11 |
from PIL import Image
|
12 |
-
|
13 |
import uuid
|
14 |
import random
|
15 |
from huggingface_hub import hf_hub_download
|
@@ -18,7 +15,7 @@ import spaces
|
|
18 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
19 |
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
20 |
)
|
21 |
-
pipe.to("
|
22 |
|
23 |
max_64_bit_int = 2**63 - 1
|
24 |
|
@@ -31,7 +28,7 @@ def sample(
|
|
31 |
fps_id: int = 6,
|
32 |
version: str = "svd_xt",
|
33 |
cond_aug: float = 0.02,
|
34 |
-
decoding_t: int = 3,
|
35 |
device: str = "cuda",
|
36 |
output_folder: str = "outputs",
|
37 |
):
|
@@ -53,40 +50,30 @@ def sample(
|
|
53 |
return video_path, frames, seed
|
54 |
|
55 |
def resize_image(image, output_size=(1024, 576)):
|
56 |
-
|
57 |
-
|
58 |
-
image_aspect = image.width / image.height # Aspect ratio of the original image
|
59 |
|
60 |
-
# Resize then crop if the original image is larger
|
61 |
if image_aspect > target_aspect:
|
62 |
-
# Resize the image to match the target height, maintaining aspect ratio
|
63 |
new_height = output_size[1]
|
64 |
new_width = int(new_height * image_aspect)
|
65 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
66 |
-
# Calculate coordinates for cropping
|
67 |
left = (new_width - output_size[0]) / 2
|
68 |
top = 0
|
69 |
right = (new_width + output_size[0]) / 2
|
70 |
bottom = output_size[1]
|
71 |
else:
|
72 |
-
# Resize the image to match the target width, maintaining aspect ratio
|
73 |
new_width = output_size[0]
|
74 |
new_height = int(new_width / image_aspect)
|
75 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
76 |
-
# Calculate coordinates for cropping
|
77 |
left = 0
|
78 |
top = (new_height - output_size[1]) / 2
|
79 |
right = output_size[0]
|
80 |
bottom = (new_height + output_size[1]) / 2
|
81 |
|
82 |
-
# Crop the image
|
83 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
84 |
return cropped_image
|
85 |
|
86 |
with gr.Blocks() as demo:
|
87 |
-
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
88 |
-
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
89 |
-
''')
|
90 |
with gr.Row():
|
91 |
with gr.Column():
|
92 |
image = gr.Image(label="Upload your image", type="pil")
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
from glob import glob
|
5 |
from pathlib import Path
|
6 |
from typing import Optional
|
|
|
7 |
from diffusers import StableVideoDiffusionPipeline
|
8 |
from diffusers.utils import load_image, export_to_video
|
9 |
from PIL import Image
|
|
|
10 |
import uuid
|
11 |
import random
|
12 |
from huggingface_hub import hf_hub_download
|
|
|
15 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
16 |
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
17 |
)
|
18 |
+
pipe.to("cpu")
|
19 |
|
20 |
max_64_bit_int = 2**63 - 1
|
21 |
|
|
|
28 |
fps_id: int = 6,
|
29 |
version: str = "svd_xt",
|
30 |
cond_aug: float = 0.02,
|
31 |
+
decoding_t: int = 3,
|
32 |
device: str = "cuda",
|
33 |
output_folder: str = "outputs",
|
34 |
):
|
|
|
50 |
return video_path, frames, seed
|
51 |
|
52 |
def resize_image(image, output_size=(1024, 576)):
|
53 |
+
target_aspect = output_size[0] / output_size[1]
|
54 |
+
image_aspect = image.width / image.height
|
|
|
55 |
|
|
|
56 |
if image_aspect > target_aspect:
|
|
|
57 |
new_height = output_size[1]
|
58 |
new_width = int(new_height * image_aspect)
|
59 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
60 |
left = (new_width - output_size[0]) / 2
|
61 |
top = 0
|
62 |
right = (new_width + output_size[0]) / 2
|
63 |
bottom = output_size[1]
|
64 |
else:
|
|
|
65 |
new_width = output_size[0]
|
66 |
new_height = int(new_width / image_aspect)
|
67 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
68 |
left = 0
|
69 |
top = (new_height - output_size[1]) / 2
|
70 |
right = output_size[0]
|
71 |
bottom = (new_height + output_size[1]) / 2
|
72 |
|
|
|
73 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
74 |
return cropped_image
|
75 |
|
76 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
image = gr.Image(label="Upload your image", type="pil")
|