import os import gradio as gr import numpy as np import random from huggingface_hub import AsyncInferenceClient from translatepy import Translator import requests import re import asyncio from PIL import Image translator = Translator() HF_TOKEN = os.environ.get("HF_TOKEN", None) basemodel = "black-forest-labs/FLUX.1-dev" MAX_SEED = np.iinfo(np.int32).max CSS = """ footer { visibility: hidden; } """ JS = """function () { gradioURL = window.location.href if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }""" def enable_lora(lora_add): if not lora_add: return basemodel else: return lora_add async def generate_image( prompt:str, model:str, lora_word:str, width:int=768, height:int=1024, scales:float=3.5, steps:int=24, seed:int=-1): if seed == -1: seed = random.randint(0, MAX_SEED) seed = int(seed) print(f'prompt:{prompt}') text = str(translator.translate(prompt, 'English')) + "," + lora_word client = AsyncInferenceClient() try: image = await client.text_to_image( prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model, ) except Exception as e: raise gr.Error(f"Error in {e}") return image, seed async def gen( prompt:str, lora_add:str="", lora_word:str="", width:int=768, height:int=1024, scales:float=3.5, steps:int=24, seed:int=-1, progress=gr.Progress(track_tqdm=True) ): model = enable_lora(lora_add) print(model) image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed) return image, seed with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: gr.HTML("