Spaces:
Running
Running
salomonsky
commited on
Commit
•
de6051a
1
Parent(s):
1a52ee5
Update app.py
Browse files
app.py
CHANGED
@@ -2,24 +2,30 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
-
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
7 |
import requests
|
8 |
import re
|
9 |
import asyncio
|
10 |
from PIL import Image
|
11 |
-
from gradio_client import Client, handle_file
|
12 |
-
|
13 |
|
14 |
translator = Translator()
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
16 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
def enable_lora(lora_add):
|
25 |
if not lora_add:
|
@@ -27,93 +33,131 @@ def enable_lora(lora_add):
|
|
27 |
else:
|
28 |
return lora_add
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
32 |
-
client = Client("finegrain/finegrain-image-enhancer")
|
33 |
-
result = client.predict(
|
34 |
-
input_image=handle_file(img_path),
|
35 |
-
prompt=prompt,
|
36 |
-
negative_prompt="",
|
37 |
-
seed=42,
|
38 |
-
upscale_factor=upscale_factor,
|
39 |
-
controlnet_scale=0.6,
|
40 |
-
controlnet_decay=1,
|
41 |
-
condition_scale=6,
|
42 |
-
tile_width=112,
|
43 |
-
tile_height=144,
|
44 |
-
denoise_strength=0.35,
|
45 |
-
num_inference_steps=18,
|
46 |
-
solver="DDIM",
|
47 |
-
api_name="/process"
|
48 |
-
)
|
49 |
-
return result[1]
|
50 |
-
|
51 |
-
|
52 |
-
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
53 |
if seed == -1:
|
54 |
seed = random.randint(0, MAX_SEED)
|
55 |
seed = int(seed)
|
|
|
|
|
56 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
57 |
-
async with AsyncInferenceClient() as client:
|
58 |
-
try:
|
59 |
-
image = await client.text_to_image(
|
60 |
-
prompt=text,
|
61 |
-
height=height,
|
62 |
-
width=width,
|
63 |
-
guidance_scale=scales,
|
64 |
-
num_inference_steps=steps,
|
65 |
-
model=model,
|
66 |
-
)
|
67 |
-
except Exception as e:
|
68 |
-
raise gr.Error(f"Error in {e}")
|
69 |
-
return image, seed
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
async def gen(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
model = enable_lora(lora_add)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
combined_image.paste(image, (0, 0))
|
79 |
-
combined_image.paste(upscaled_image, (image.width, 0))
|
80 |
-
return combined_image, seed
|
81 |
-
else:
|
82 |
-
return image, seed
|
83 |
-
|
84 |
-
|
85 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
86 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
87 |
with gr.Row():
|
88 |
with gr.Column(scale=4):
|
89 |
with gr.Row():
|
90 |
-
img = gr.Image(type="filepath", label='
|
91 |
with gr.Row():
|
92 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
93 |
sendBtn = gr.Button(scale=1, variant='primary')
|
94 |
with gr.Accordion("Advanced Options", open=True):
|
95 |
with gr.Column(scale=1):
|
96 |
-
width = gr.Slider(
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
gr.on(
|
105 |
-
triggers=[
|
|
|
|
|
|
|
106 |
fn=gen,
|
107 |
inputs=[
|
108 |
prompt,
|
109 |
lora_add,
|
110 |
lora_word,
|
111 |
-
width,
|
112 |
-
height,
|
113 |
-
scales,
|
114 |
-
steps,
|
115 |
-
seed
|
116 |
-
upscale_factor
|
117 |
],
|
118 |
outputs=[img, seed]
|
119 |
-
)
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
+
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
7 |
import requests
|
8 |
import re
|
9 |
import asyncio
|
10 |
from PIL import Image
|
|
|
|
|
11 |
|
12 |
translator = Translator()
|
13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
14 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
17 |
+
CSS = """
|
18 |
+
footer {
|
19 |
+
visibility: hidden;
|
20 |
+
}
|
21 |
+
"""
|
22 |
|
23 |
+
JS = """function () {
|
24 |
+
gradioURL = window.location.href
|
25 |
+
if (!gradioURL.endsWith('?__theme=dark')) {
|
26 |
+
window.location.replace(gradioURL + '?__theme=dark');
|
27 |
+
}
|
28 |
+
}"""
|
29 |
|
30 |
def enable_lora(lora_add):
|
31 |
if not lora_add:
|
|
|
33 |
else:
|
34 |
return lora_add
|
35 |
|
36 |
+
async def generate_image(
|
37 |
+
prompt:str,
|
38 |
+
model:str,
|
39 |
+
lora_word:str,
|
40 |
+
width:int=768,
|
41 |
+
height:int=1024,
|
42 |
+
scales:float=3.5,
|
43 |
+
steps:int=24,
|
44 |
+
seed:int=-1):
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
if seed == -1:
|
47 |
seed = random.randint(0, MAX_SEED)
|
48 |
seed = int(seed)
|
49 |
+
print(f'prompt:{prompt}')
|
50 |
+
|
51 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
client = AsyncInferenceClient()
|
54 |
+
try:
|
55 |
+
image = await client.text_to_image(
|
56 |
+
prompt=text,
|
57 |
+
height=height,
|
58 |
+
width=width,
|
59 |
+
guidance_scale=scales,
|
60 |
+
num_inference_steps=steps,
|
61 |
+
model=model,
|
62 |
+
)
|
63 |
+
except Exception as e:
|
64 |
+
raise gr.Error(f"Error in {e}")
|
65 |
+
|
66 |
+
return image, seed
|
67 |
|
68 |
+
async def gen(
|
69 |
+
prompt:str,
|
70 |
+
lora_add:str="",
|
71 |
+
lora_word:str="",
|
72 |
+
width:int=768,
|
73 |
+
height:int=1024,
|
74 |
+
scales:float=3.5,
|
75 |
+
steps:int=24,
|
76 |
+
seed:int=-1,
|
77 |
+
progress=gr.Progress(track_tqdm=True)
|
78 |
+
):
|
79 |
model = enable_lora(lora_add)
|
80 |
+
print(model)
|
81 |
+
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
82 |
+
return image, seed
|
83 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
85 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
86 |
with gr.Row():
|
87 |
with gr.Column(scale=4):
|
88 |
with gr.Row():
|
89 |
+
img = gr.Image(type="filepath", label='flux Generated Image', height=600)
|
90 |
with gr.Row():
|
91 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
92 |
sendBtn = gr.Button(scale=1, variant='primary')
|
93 |
with gr.Accordion("Advanced Options", open=True):
|
94 |
with gr.Column(scale=1):
|
95 |
+
width = gr.Slider(
|
96 |
+
label="Width",
|
97 |
+
minimum=512,
|
98 |
+
maximum=1280,
|
99 |
+
step=8,
|
100 |
+
value=768,
|
101 |
+
)
|
102 |
+
height = gr.Slider(
|
103 |
+
label="Height",
|
104 |
+
minimum=512,
|
105 |
+
maximum=1280,
|
106 |
+
step=8,
|
107 |
+
value=1024,
|
108 |
+
)
|
109 |
+
scales = gr.Slider(
|
110 |
+
label="Guidance",
|
111 |
+
minimum=3.5,
|
112 |
+
maximum=7,
|
113 |
+
step=0.1,
|
114 |
+
value=3.5,
|
115 |
+
)
|
116 |
+
steps = gr.Slider(
|
117 |
+
label="Steps",
|
118 |
+
minimum=1,
|
119 |
+
maximum=100,
|
120 |
+
step=1,
|
121 |
+
value=24,
|
122 |
+
)
|
123 |
+
seed = gr.Slider(
|
124 |
+
label="Seeds",
|
125 |
+
minimum=-1,
|
126 |
+
maximum=MAX_SEED,
|
127 |
+
step=1,
|
128 |
+
value=-1,
|
129 |
+
)
|
130 |
+
lora_add = gr.Textbox(
|
131 |
+
label="Add Flux LoRA",
|
132 |
+
info="Copy the HF LoRA model name here",
|
133 |
+
lines=1,
|
134 |
+
placeholder="Please use Warm status model",
|
135 |
+
)
|
136 |
+
lora_word = gr.Textbox(
|
137 |
+
label="Add Flux LoRA Trigger Word",
|
138 |
+
info="Add the Trigger Word",
|
139 |
+
lines=1,
|
140 |
+
value="",
|
141 |
+
)
|
142 |
+
|
143 |
gr.on(
|
144 |
+
triggers=[
|
145 |
+
prompt.submit,
|
146 |
+
sendBtn.click,
|
147 |
+
],
|
148 |
fn=gen,
|
149 |
inputs=[
|
150 |
prompt,
|
151 |
lora_add,
|
152 |
lora_word,
|
153 |
+
width,
|
154 |
+
height,
|
155 |
+
scales,
|
156 |
+
steps,
|
157 |
+
seed
|
|
|
158 |
],
|
159 |
outputs=[img, seed]
|
160 |
+
)
|
161 |
+
|
162 |
+
if __name__ == "__main__":
|
163 |
+
demo.queue(api_open=False).launch(show_api=False, share=False)
|