Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,12 @@ import random
|
|
9 |
import numpy as np
|
10 |
import yaml
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
client = InferenceClient()
|
@@ -19,17 +23,28 @@ DATA_PATH.mkdir(exist_ok=True)
|
|
19 |
PREDEFINED_SEED = random.randint(0, MAX_SEED)
|
20 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN")
|
21 |
|
|
|
|
|
|
|
22 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def authenticate_user(username, password):
|
28 |
return username == credentials["username"] and password == credentials["password"]
|
29 |
|
30 |
def list_saved_images():
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def prepare_face_app():
|
35 |
app = FaceAnalysis(name='buffalo_l')
|
@@ -43,29 +58,31 @@ def sort_faces(faces):
|
|
43 |
return sorted(faces, key=lambda x: x.bbox[0])
|
44 |
|
45 |
def get_face(faces, face_id):
|
|
|
|
|
46 |
return faces[face_id - 1]
|
47 |
|
48 |
def swap_faces(source_image, source_face_index, destination_image, destination_face_index):
|
49 |
faces = sort_faces(app.get(source_image))
|
50 |
-
if not faces:
|
51 |
-
st.warning("No se encontraron caras en la imagen de origen.")
|
52 |
-
return None
|
53 |
source_face = get_face(faces, source_face_index)
|
54 |
-
|
55 |
res_faces = sort_faces(app.get(destination_image))
|
56 |
-
if
|
57 |
-
|
58 |
-
return None
|
59 |
res_face = get_face(res_faces, destination_face_index)
|
60 |
-
|
61 |
result = swapper.get(destination_image, res_face, source_face, paste_back=True)
|
62 |
return result
|
63 |
|
64 |
def generate_image(prompt, width, height, seed, model_name):
|
65 |
if seed == -1:
|
66 |
seed = random.randint(0, MAX_SEED)
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def display_gallery():
|
71 |
st.header("Galería de Imágenes Guardadas")
|
@@ -84,67 +101,74 @@ def display_gallery():
|
|
84 |
if image_file.exists():
|
85 |
os.remove(image_file)
|
86 |
st.success("Imagen borrada")
|
|
|
87 |
else:
|
88 |
st.warning("La imagen no existe.")
|
89 |
else:
|
90 |
st.info("No hay imágenes guardadas.")
|
91 |
|
92 |
-
def
|
93 |
-
prompts
|
94 |
-
|
95 |
-
|
96 |
-
with open(prompt_file, "r") as f:
|
97 |
-
for line in f:
|
98 |
-
if line.startswith(image_name):
|
99 |
-
prompts[image_name] = line.split(": ", 1)[1].strip()
|
100 |
-
return prompts.get(image_name, "No hay prompt asociado.")
|
101 |
|
102 |
def generate_variations(prompt, num_variants, use_enhanced):
|
103 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
return [prompt] * num_variants
|
105 |
-
|
106 |
-
instructions = [
|
107 |
-
"With this words, create a photorealistic description for a detailed txt2img prompt in English in 200 characters maximum",
|
108 |
-
"With this idea, write a creative, realistic, and detailed text-to-image prompt in English in 200 characters maximum",
|
109 |
-
"With this text, generate a descriptive and True to life txt2img prompt in English in 200 characters maximum",
|
110 |
-
"With my idea, describe a photorealistic scene with detailed illumination for a txt2img prompt in English in 200 characters maximum",
|
111 |
-
"With this concept, give a realistic, elegant txt2img prompt in English, emphasizing photorealism in 200 characters maximum",
|
112 |
-
"With this perspective, conform a visually dynamic and hyperrealistic txt2img prompt in English in 200 characters maximum",
|
113 |
-
"With this inspiration, realize a cinematic txt2img prompt in English with hyperrealistic elements in 200 characters maximum",
|
114 |
-
"With my idea, make a lifelike and txt2img prompt in English, focusing on photorealistic depth in 200 characters maximum"
|
115 |
-
]
|
116 |
-
|
117 |
-
prompts = set()
|
118 |
-
while len(prompts) < num_variants:
|
119 |
-
instruction = random.choice(instructions)
|
120 |
-
enhanced_prompt = f"{instruction}: {prompt}"
|
121 |
-
prompts.add(enhanced_prompt)
|
122 |
-
|
123 |
-
return list(prompts)
|
124 |
|
125 |
def gen(prompts, width, height, model_name, num_variants=1):
|
126 |
images = []
|
127 |
-
seeds =
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
return images
|
137 |
|
138 |
-
def
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
def login_form():
|
145 |
st.title("Iniciar Sesión")
|
146 |
username = st.text_input("Usuario", value="admin")
|
147 |
-
password = st.text_input("Contraseña", value="
|
148 |
if st.button("Iniciar Sesión"):
|
149 |
if authenticate_user(username, password):
|
150 |
st.success("Autenticación exitosa.")
|
@@ -153,24 +177,42 @@ def login_form():
|
|
153 |
st.error("Credenciales incorrectas. Intenta de nuevo.")
|
154 |
|
155 |
def save_image(image, filename):
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
|
164 |
def upload_image_to_gallery():
|
165 |
uploaded_image = st.sidebar.file_uploader("Sube una imagen a la galería", type=["jpg", "jpeg", "png"])
|
166 |
if uploaded_image:
|
167 |
image = Image.open(uploaded_image)
|
168 |
-
|
169 |
-
image_path = save_image(image, unique_filename)
|
170 |
if image_path:
|
171 |
-
save_prompt(f"{
|
172 |
st.sidebar.success(f"Imagen subida: {image_path}")
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
def main():
|
175 |
st.set_page_config(layout="wide")
|
176 |
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
|
@@ -185,16 +227,20 @@ def main():
|
|
185 |
prompt_enhance = st.sidebar.checkbox("Mejorar Prompt", True)
|
186 |
num_variants = st.sidebar.slider("Número de imágenes", 1, 8, 8)
|
187 |
width, height = (720, 1280) if format_option == "9:16" else (1280, 720) if format_option == "16:9" else (1280, 1280)
|
188 |
-
|
|
|
189 |
prompts = generate_variations(prompt, num_variants=num_variants, use_enhanced=prompt_enhance)
|
190 |
-
|
|
|
|
|
191 |
if generated_image_path and upscale_checkbox:
|
192 |
upscale_factor = st.sidebar.slider("Factor de Escalado", 1, 4, 2)
|
193 |
improved_image = get_upscale_finegrain(prompt, generated_image_path, upscale_factor)
|
194 |
if improved_image:
|
195 |
st.image(improved_image, caption="Imagen Escalada", use_column_width=True)
|
|
|
196 |
upload_image_to_gallery()
|
197 |
display_gallery()
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
-
main()
|
|
|
9 |
import numpy as np
|
10 |
import yaml
|
11 |
|
12 |
+
try:
|
13 |
+
with open("config.yaml", "r") as file:
|
14 |
+
credentials = yaml.safe_load(file)
|
15 |
+
except Exception as e:
|
16 |
+
st.error(f"Error al cargar el archivo de configuración: {e}")
|
17 |
+
credentials = {"username": "", "password": ""}
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
client = InferenceClient()
|
|
|
23 |
PREDEFINED_SEED = random.randint(0, MAX_SEED)
|
24 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN")
|
25 |
|
26 |
+
if not HF_TOKEN_UPSCALER:
|
27 |
+
st.warning("HF_TOKEN no está configurado. Algunas funcionalidades pueden no funcionar.")
|
28 |
+
|
29 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
30 |
+
try:
|
31 |
+
upscale_client = InferenceClient("fal/AuraSR-v2", hf_token=HF_TOKEN_UPSCALER)
|
32 |
+
result = upscale_client.predict(input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor)
|
33 |
+
return result[1] if isinstance(result, list) and len(result) > 1 else None
|
34 |
+
except Exception as e:
|
35 |
+
st.error(f"Error al mejorar la imagen: {e}")
|
36 |
+
return None
|
37 |
|
38 |
def authenticate_user(username, password):
|
39 |
return username == credentials["username"] and password == credentials["password"]
|
40 |
|
41 |
def list_saved_images():
|
42 |
+
try:
|
43 |
+
image_files = sorted(DATA_PATH.glob("*.jpg"))
|
44 |
+
return image_files
|
45 |
+
except Exception as e:
|
46 |
+
st.error(f"Error al listar imágenes guardadas: {e}")
|
47 |
+
return []
|
48 |
|
49 |
def prepare_face_app():
|
50 |
app = FaceAnalysis(name='buffalo_l')
|
|
|
58 |
return sorted(faces, key=lambda x: x.bbox[0])
|
59 |
|
60 |
def get_face(faces, face_id):
|
61 |
+
if not faces or len(faces) < face_id:
|
62 |
+
raise ValueError("Rostro no disponible.")
|
63 |
return faces[face_id - 1]
|
64 |
|
65 |
def swap_faces(source_image, source_face_index, destination_image, destination_face_index):
|
66 |
faces = sort_faces(app.get(source_image))
|
|
|
|
|
|
|
67 |
source_face = get_face(faces, source_face_index)
|
|
|
68 |
res_faces = sort_faces(app.get(destination_image))
|
69 |
+
if destination_face_index > len(res_faces) or destination_face_index < 1:
|
70 |
+
raise ValueError("Índice de rostro de destino no válido.")
|
|
|
71 |
res_face = get_face(res_faces, destination_face_index)
|
|
|
72 |
result = swapper.get(destination_image, res_face, source_face, paste_back=True)
|
73 |
return result
|
74 |
|
75 |
def generate_image(prompt, width, height, seed, model_name):
|
76 |
if seed == -1:
|
77 |
seed = random.randint(0, MAX_SEED)
|
78 |
+
try:
|
79 |
+
image = client.text_to_image(prompt=prompt, height=height, width=width, model=model_name)
|
80 |
+
return image, seed
|
81 |
+
except Exception as e:
|
82 |
+
st.error(f"Error al generar imagen: {e}")
|
83 |
+
if hasattr(e, 'response') and e.response is not None:
|
84 |
+
st.error(f"Detalles del error: {e.response.text}")
|
85 |
+
return None, seed
|
86 |
|
87 |
def display_gallery():
|
88 |
st.header("Galería de Imágenes Guardadas")
|
|
|
101 |
if image_file.exists():
|
102 |
os.remove(image_file)
|
103 |
st.success("Imagen borrada")
|
104 |
+
display_gallery()
|
105 |
else:
|
106 |
st.warning("La imagen no existe.")
|
107 |
else:
|
108 |
st.info("No hay imágenes guardadas.")
|
109 |
|
110 |
+
def save_prompt(prompt):
|
111 |
+
with open(DATA_PATH / "prompts.txt", "a") as f:
|
112 |
+
f.write(prompt + "\n")
|
113 |
+
st.success("Prompt guardado.")
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def generate_variations(prompt, num_variants, use_enhanced):
|
116 |
+
if use_enhanced:
|
117 |
+
instructions = [
|
118 |
+
"With this words, create a photorealistic description for a detailed txt2img prompt in English in 200 characters maximum",
|
119 |
+
"With this idea, write a creative, realistic, and detailed text-to-image prompt in English in 200 characters maximum",
|
120 |
+
"With this text, generate a descriptive and True to life txt2img prompt in English in 200 characters maximum",
|
121 |
+
"With my idea, describe a photorealistic scene with detailed illumination for a txt2img prompt in English in 200 characters maximum",
|
122 |
+
"With this concept, give a realistic, elegant txt2img prompt in English, emphasizing photorealism in 200 characters maximum",
|
123 |
+
"With this perspective, conform a visually dynamic and hyperrealistic txt2img prompt in English in 200 characters maximum",
|
124 |
+
"With this inspiration, realize a cinematic txt2img prompt in English with hyperrealistic elements in 200 characters maximum",
|
125 |
+
"With my idea, make a lifelike and txt2img prompt in English, focusing on photorealistic depth in 200 characters maximum"
|
126 |
+
]
|
127 |
+
prompts = set()
|
128 |
+
while len(prompts) < num_variants:
|
129 |
+
instruction = random.choice(instructions)
|
130 |
+
enhanced_prompt = f"{instruction}: {prompt}"
|
131 |
+
prompts.add(enhanced_prompt)
|
132 |
+
return list(prompts)
|
133 |
+
else:
|
134 |
return [prompt] * num_variants
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def gen(prompts, width, height, model_name, num_variants=1):
|
137 |
images = []
|
138 |
+
seeds = []
|
139 |
+
|
140 |
+
while len(seeds) < num_variants:
|
141 |
+
new_seed = random.randint(0, MAX_SEED)
|
142 |
+
if new_seed not in seeds:
|
143 |
+
seeds.append(new_seed)
|
144 |
+
|
145 |
+
try:
|
146 |
+
for idx, (prompt, seed) in enumerate(zip(prompts[:num_variants], seeds)):
|
147 |
+
image, _ = generate_image(prompt, width, height, seed, model_name)
|
148 |
+
image_path = save_image(image, f"generated_image_{seed}.jpg")
|
149 |
+
if image_path:
|
150 |
+
save_prompt(f"generated_image_{seed}.jpg: {prompt}")
|
151 |
+
st.success(f"Imagen {idx + 1} generada")
|
152 |
+
images.append(str(image_path))
|
153 |
+
except Exception as e:
|
154 |
+
st.error(f"Error al generar imágenes: {e}")
|
155 |
return images
|
156 |
|
157 |
+
def get_prompt_for_image(image_name):
|
158 |
+
prompts = {}
|
159 |
+
try:
|
160 |
+
with open(DATA_PATH / "prompts.txt", "r") as f:
|
161 |
+
for line in f:
|
162 |
+
if line.startswith(image_name):
|
163 |
+
prompts[image_name] = line.split(": ", 1)[1].strip()
|
164 |
+
except FileNotFoundError:
|
165 |
+
return "No hay prompt asociado."
|
166 |
+
return prompts.get(image_name, "No hay prompt asociado.")
|
167 |
|
168 |
def login_form():
|
169 |
st.title("Iniciar Sesión")
|
170 |
username = st.text_input("Usuario", value="admin")
|
171 |
+
password = st.text_input("Contraseña", value="flux3", type="password")
|
172 |
if st.button("Iniciar Sesión"):
|
173 |
if authenticate_user(username, password):
|
174 |
st.success("Autenticación exitosa.")
|
|
|
177 |
st.error("Credenciales incorrectas. Intenta de nuevo.")
|
178 |
|
179 |
def save_image(image, filename):
|
180 |
+
try:
|
181 |
+
image_path = DATA_PATH / filename
|
182 |
+
if isinstance(image, bytes):
|
183 |
+
with open(image_path, "wb") as f:
|
184 |
+
f.write(image)
|
185 |
+
else:
|
186 |
+
image.save(image_path)
|
187 |
+
return image_path
|
188 |
+
except Exception as e:
|
189 |
+
st.error(f"Error al guardar la imagen: {e}")
|
190 |
+
return None
|
191 |
|
192 |
def upload_image_to_gallery():
|
193 |
uploaded_image = st.sidebar.file_uploader("Sube una imagen a la galería", type=["jpg", "jpeg", "png"])
|
194 |
if uploaded_image:
|
195 |
image = Image.open(uploaded_image)
|
196 |
+
image_path = save_image(image, f"{uploaded_image.name}")
|
|
|
197 |
if image_path:
|
198 |
+
save_prompt(f"{uploaded_image.name}: uploaded by user")
|
199 |
st.sidebar.success(f"Imagen subida: {image_path}")
|
200 |
|
201 |
+
def gen(prompts, width, height, model_name, num_variants=1):
|
202 |
+
images = []
|
203 |
+
try:
|
204 |
+
for idx, prompt in enumerate(prompts[:num_variants]):
|
205 |
+
seed = random.randint(0, MAX_SEED)
|
206 |
+
image, seed = generate_image(prompt, width, height, seed, model_name)
|
207 |
+
image_path = save_image(image, f"generated_image_{seed}.jpg")
|
208 |
+
if image_path:
|
209 |
+
save_prompt(f"generated_image_{seed}.jpg: {prompt}")
|
210 |
+
st.success(f"Imagen {idx + 1} generada")
|
211 |
+
images.append(str(image_path))
|
212 |
+
except Exception as e:
|
213 |
+
st.error(f"Error al generar imágenes: {e}")
|
214 |
+
return images
|
215 |
+
|
216 |
def main():
|
217 |
st.set_page_config(layout="wide")
|
218 |
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
|
|
|
227 |
prompt_enhance = st.sidebar.checkbox("Mejorar Prompt", True)
|
228 |
num_variants = st.sidebar.slider("Número de imágenes", 1, 8, 8)
|
229 |
width, height = (720, 1280) if format_option == "9:16" else (1280, 720) if format_option == "16:9" else (1280, 1280)
|
230 |
+
|
231 |
+
if prompt:
|
232 |
prompts = generate_variations(prompt, num_variants=num_variants, use_enhanced=prompt_enhance)
|
233 |
+
if st.sidebar.button("Generar Imágenes"):
|
234 |
+
images = gen(prompts, width, height, model_option, num_variants)
|
235 |
+
|
236 |
if generated_image_path and upscale_checkbox:
|
237 |
upscale_factor = st.sidebar.slider("Factor de Escalado", 1, 4, 2)
|
238 |
improved_image = get_upscale_finegrain(prompt, generated_image_path, upscale_factor)
|
239 |
if improved_image:
|
240 |
st.image(improved_image, caption="Imagen Escalada", use_column_width=True)
|
241 |
+
|
242 |
upload_image_to_gallery()
|
243 |
display_gallery()
|
244 |
|
245 |
if __name__ == "__main__":
|
246 |
+
main()
|