Spaces:
Running
Running
import os, zipfile, yaml, numpy as np, random, asyncio | |
from pathlib import Path | |
from PIL import Image | |
import streamlit as st | |
from huggingface_hub import AsyncInferenceClient | |
from moviepy.editor import ImageSequenceClip | |
try: | |
credentials = yaml.safe_load(open("config.yaml")) | |
except: | |
st.error("Error al cargar el archivo de configuración.") | |
credentials = {"username": "", "password": ""} | |
MAX_SEED = np.iinfo(np.int32).max | |
client = AsyncInferenceClient() | |
DATA_PATH = Path("./data") | |
PREDEFINED_SEED = random.randint(0, MAX_SEED) | |
DATA_PATH.mkdir(exist_ok=True) | |
async def generate_image(prompt, width, height, seed, model_name): | |
try: | |
return await client.text_to_image(prompt=prompt, height=height, width=width, model=model_name), int(seed) | |
except Exception as e: | |
return f"Error al generar imagen: {e}", None | |
def save_prompt(prompt_text, seed): | |
try: | |
prompt_file_path = DATA_PATH / f"prompt_{seed}.txt" | |
open(prompt_file_path, "w").write(prompt_text) | |
return prompt_file_path | |
except Exception as e: | |
st.error(f"Error al guardar el prompt: {e}") | |
async def gen(prompt, width, height, model_name): | |
seed, progress_bar = PREDEFINED_SEED, st.progress(0) | |
image, seed = await generate_image(prompt, width, height, seed, model_name) | |
progress_bar.progress(100) | |
if isinstance(image, str) and image.startswith("Error"): | |
return [image, None] | |
return [str(save_image(image, seed)), str(save_prompt(prompt, seed))] | |
def save_image(image, seed): | |
try: | |
image_path = DATA_PATH / f"image_{seed}.jpg" | |
image.save(image_path, format="JPEG") | |
return image_path | |
except Exception as e: | |
st.error(f"Error al guardar la imagen: {e}") | |
def get_storage(): | |
files = sorted([file for file in DATA_PATH.glob("*.jpg")], key=lambda x: x.stat().st_mtime, reverse=True) | |
return [str(file.resolve()) for file in files], f"Uso total: {sum([file.stat().st_size for file in files])/(1024.0 ** 3):.3f}GB" | |
def get_prompts(): | |
return {file.stem.replace("prompt_", ""): file for file in DATA_PATH.glob("*.txt")} | |
def delete_all_images(): | |
try: | |
[os.remove(file) for file in DATA_PATH.glob("*.jpg") + DATA_PATH.glob("*.txt")] | |
st.success("Todas las imágenes y prompts han sido borrados.") | |
except Exception as e: | |
st.error(f"Error al borrar archivos: {e}") | |
def download_images_as_zip(): | |
zip_path = DATA_PATH / "images.zip" | |
zipf = zipfile.ZipFile(zip_path, 'w') | |
[zipf.write(file, arcname=file.name) for file in DATA_PATH.glob("*.jpg")] | |
with open(zip_path, "rb") as zip_file: | |
st.download_button(label="Descargar imágenes en .zip", data=zip_file, file_name="images.zip", mime="application/zip") | |
def create_video_from_images(): | |
try: | |
image_files = sorted(DATA_PATH.glob("*.jpg")) | |
image_sequence = [Image.open(image_file) for image_file in image_files] | |
except: | |
st.error("No hay imágenes disponibles para crear un video.") | |
return | |
video_path = DATA_PATH / "output_video.mp4" | |
ImageSequenceClip([np.array(img) for img in image_sequence], fps=1).write_videofile(str(video_path), codec="libx264") | |
return video_path | |
def main(): | |
st.set_page_config(layout="wide") | |
st.title("Generador de Imágenes Flux") | |
if "authenticated" not in st.session_state: | |
st.session_state.authenticated = False | |
if not st.session_state.authenticated: | |
username, password = st.text_input("Usuario"), st.text_input("Contraseña", type="password") | |
if st.button("Ingresar") and username == credentials["username"] and password == credentials["password"]: | |
st.session_state.authenticated = True | |
st.success("Inicio de sesión exitoso.") | |
elif st.button("Ingresar"): | |
st.error("Usuario o contraseña incorrectos.") | |
return | |
prompt = st.sidebar.text_input("Descripción de la imagen", max_chars=500) | |
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"]) | |
model_option = st.sidebar.selectbox("Modelo", ["enhanceaiteam/Flux-Uncensored-V2", "enhanceaiteam/Flux-uncensored"]) | |
width, height = (720, 1280) if format_option == "9:16" else (1280, 720) | |
if st.sidebar.button("Generar Imagen"): | |
with st.spinner("Generando imagen..."): | |
result = asyncio.run(gen(prompt, width, height, model_option)) | |
image_paths, prompt_file = result[0], result[1] | |
if Path(image_paths).exists(): | |
st.image(image_paths, caption="Imagen Generada") | |
if prompt_file and Path(prompt_file).exists(): | |
st.write(f"Prompt utilizado: {Path(prompt_file).read_text()}") | |
files, usage = get_storage() | |
st.text(usage) | |
cols, prompts = st.columns(6), get_prompts() | |
for idx, file in enumerate(files): | |
with cols[idx % 6]: | |
image = Image.open(file) | |
prompt_file = prompts.get(Path(file).stem.replace("image_", ""), None) | |
st.image(image, caption=f"Imagen {idx+1}") | |
st.write(f"Prompt: {Path(prompt_file).read_text() if prompt_file else 'No disponible'}") | |
if st.button(f"Borrar Imagen {idx+1}", key=f"delete_{idx}"): | |
os.remove(file) | |
if prompt_file: os.remove(prompt_file) | |
st.success(f"Imagen {idx+1} y su prompt fueron borrados.") | |
if st.sidebar.button("Borrar todas las imágenes"): | |
delete_all_images() | |
if st.sidebar.button("Descargar imágenes en .zip"): | |
download_images_as_zip() | |
if st.button("Generar video con las imágenes"): | |
video_path = create_video_from_images() | |
if video_path: | |
st.video(str(video_path), format="video/mp4") | |
if __name__ == "__main__": | |
main() |