File size: 9,317 Bytes
90986f4
 
 
f693d07
 
90986f4
f693d07
90986f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e9673
90986f4
e6e9673
f693d07
2974e4c
90986f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e94dda
2974e4c
90986f4
 
 
 
 
 
 
 
 
 
 
 
7e94dda
90986f4
 
7e94dda
90986f4
7e94dda
90986f4
2974e4c
90986f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e94dda
 
 
90986f4
7e94dda
90986f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1b2ce
d99c194
7c6a22d
90986f4
5981fd1
90986f4
 
5981fd1
90986f4
 
 
 
 
2974e4c
90986f4
 
 
 
 
 
2974e4c
 
90986f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e9673
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import numpy as np
import random
from pathlib import Path
from PIL import Image
from insightface.app import FaceAnalysis
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from gradio_client import Client, handle_file
import asyncio
import insightface
from concurrent.futures import ThreadPoolExecutor
import yaml

try:
    with open("config.yaml", "r") as file:
        credentials = yaml.safe_load(file)
except Exception as e:
    st.error(f"Error al cargar el archivo de configuraci贸n: {e}")
    credentials = {"username": "", "password": ""} 

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)

def prepare_face_app():
    app = FaceAnalysis(name='buffalo_l')
    app.prepare(ctx_id=0, det_size=(640, 640))
    swapper = insightface.model_zoo.get_model('onix.onnx')
    return app, swapper

app, swapper = prepare_face_app()

def run_async(func):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    executor = ThreadPoolExecutor(max_workers=1)
    result = loop.run_in_executor(executor, func)
    return loop.run_until_complete(result)

async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        image = await client.text_to_image(
            prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
            num_inference_steps=steps, model=model
        )
        return image, seed
    except Exception as e:
        return f"Error al generar imagen: {e}", None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(
            input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor
        )
        return result[1] if isinstance(result, list) and len(result) > 1 else None
    except Exception as e:
        return None

def save_prompt(prompt_text, seed):
    try:
        prompt_file_path = DATA_PATH / f"prompt_{seed}.txt"
        with open(prompt_file_path, "w") as prompt_file:
            prompt_file.write(prompt_text)
        return prompt_file_path
    except Exception as e:
        st.error(f"Error al guardar el prompt: {e}")
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language):
    combined_prompt = prompt  
    if process_enhancer:
        improved_prompt = await improve_prompt(prompt, language)
        combined_prompt = f"{prompt} {improved_prompt}"
    
    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    progress_bar = st.progress(0)
    image, seed = await generate_image(combined_prompt, basemodel, width, height, scales, steps, seed)
    progress_bar.progress(50)

    if isinstance(image, str) and image.startswith("Error"):
        progress_bar.empty()
        return [image, None, combined_prompt]

    image_path = save_image(image, seed)
    prompt_file_path = save_prompt(combined_prompt, seed)

    if process_upscale:
        upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
        if upscale_image_path:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
            progress_bar.progress(100)
            image_path.unlink()  
            return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)]
        else:
            progress_bar.empty()
            return [str(image_path), str(prompt_file_path)]
    else:
        progress_bar.progress(100)
        return [str(image_path), str(prompt_file_path)]

async def improve_prompt(prompt, language):
    try:
        instruction_en = "With this idea, describe in English a detailed txt2img prompt in 500 characters at most, add illumination, atmosphere, cinematic elements, and characters if need it..."
        instruction_es = "Con esta idea, describe en espa帽ol un prompt detallado de txt2img en un m谩ximo de 500 caracteres, con iluminaci贸n, atm贸sfera, elementos cinematogr谩ficos y en su caso personajes..."
        instruction = instruction_en if language == "en" else instruction_es
        formatted_prompt = f"{prompt}: {instruction}"
        response = llm_client.text_generation(formatted_prompt, max_new_tokens=500)
        improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
        return improved_text[:500] if len(improved_text) > 500 else improved_text
    except Exception as e:
        return f"Error mejorando el prompt: {e}"

def save_image(image, seed):
    try:
        image_path = DATA_PATH / f"image_{seed}.jpg"
        image.save(image_path, format="JPEG")
        return image_path
    except Exception as e:
        st.error(f"Error al guardar la imagen: {e}")
        return None

def get_storage():
    files = [file for file in DATA_PATH.glob("*.jpg") if file.is_file()]
    files.sort(key=lambda x: x.stat().st_mtime, reverse=True)
    usage = sum([file.stat().st_size for file in files])
    return [str(file.resolve()) for file in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB"

def get_prompts():
    prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()]
    return {file.stem.replace("prompt_", ""): file for file in prompt_files}

def delete_image(image_path):
    try:
        if Path(image_path).exists():
            Path(image_path).unlink()
            st.success(f"Imagen {image_path} borrada.")
        else:
            st.error("El archivo de imagen no existe.")
    except Exception as e:
        st.error(f"Error al borrar la imagen: {e}")

def authenticate_user(username, password, credentials): 
    return username == credentials["username"] and password == credentials["password"]

def login_form(credentials):
    st.title("Iniciar Sesi贸n")
    username, password = st.text_input("Usuario"), st.text_input("Contrase帽a", type="password")
    if st.button("Iniciar Sesi贸n") and authenticate_user(username, password, credentials): 
        st.session_state['authenticated'] = True

def sort_faces(faces): 
    return sorted(faces, key=lambda x: x.bbox[0])

def get_face(faces, face_id):
    if not faces: raise ValueError("No se encontraron rostros.")
    if len(faces) < face_id or face_id < 1: 
        raise ValueError(f"Solo hay {len(faces)} rostros, pediste el {face_id}.")
    return faces[face_id - 1]

def swap_faces(source_image, source_face_index, destination_image):
    faces = sort_faces(app.get(source_image))
    source_face = get_face(faces, source_face_index)
    res_faces = sort_faces(app.get(destination_image))
    res_face = get_face(res_faces, 1)
    result = swapper.get(destination_image, res_face, source_face, paste_back=True)
    return result

def main():
    st.set_page_config(layout="wide")
    login_form(credentials)
    
    if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
        st.warning("Por favor, inicia sesi贸n para acceder a la aplicaci贸n.")
        return
    
    prompt = st.sidebar.text_input("Descripci贸n de la imagen", max_chars=900)
    process_enhancer = st.sidebar.checkbox("Mejorar Prompt", value=False)
    language = st.sidebar.selectbox("Idioma", ["en", "es"])
    basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-DEV", "black-forest-labs/FLUX.1-schnell"])
    format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
    process_upscale = st.sidebar.checkbox("Procesar Escalador", value=False)
    upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
    scales = st.sidebar.slider("Escalado", 1, 20, 10)
    steps = st.sidebar.slider("Pasos", 1, 100, 20)
    seed = st.sidebar.number_input("Semilla", value=-1)
    width, height = (1080, 1920) if format_option == "9:16" else (1920, 1080)

    if st.sidebar.button("Generar Imagen"):
        with st.spinner("Generando..."):
            # Llamada a la funci贸n asincr贸nica desde un evento
            image_path, prompt_file_path = asyncio.run(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language))
            if image_path:
                st.image(image_path, caption="Imagen Generada", use_column_width=True)
                st.download_button("Descargar Imagen", image_path)

    if st.sidebar.button("Ver Almacenamiento"):
        files, usage = get_storage()
        st.write(usage)
        for file in files:
            st.write(file)

    if st.sidebar.button("Ver Prompts"):
        prompts = get_prompts()
        for key, path in prompts.items():
            st.write(f"{key}: {path}")

    if st.sidebar.button("Borrar Imagen"):
        image_to_delete = st.sidebar.text_input("Ruta de la imagen a borrar")
        if image_to_delete:
            delete_image(image_to_delete)

if __name__ == "__main__":
    main()