Spaces:
Running
Running
File size: 9,317 Bytes
90986f4 f693d07 90986f4 f693d07 90986f4 e6e9673 90986f4 e6e9673 f693d07 2974e4c 90986f4 7e94dda 2974e4c 90986f4 7e94dda 90986f4 7e94dda 90986f4 7e94dda 90986f4 2974e4c 90986f4 7e94dda 90986f4 7e94dda 90986f4 5c1b2ce d99c194 7c6a22d 90986f4 5981fd1 90986f4 5981fd1 90986f4 2974e4c 90986f4 2974e4c 90986f4 e6e9673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
import numpy as np
import random
from pathlib import Path
from PIL import Image
from insightface.app import FaceAnalysis
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from gradio_client import Client, handle_file
import asyncio
import insightface
from concurrent.futures import ThreadPoolExecutor
import yaml
try:
with open("config.yaml", "r") as file:
credentials = yaml.safe_load(file)
except Exception as e:
st.error(f"Error al cargar el archivo de configuraci贸n: {e}")
credentials = {"username": "", "password": ""}
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
def prepare_face_app():
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('onix.onnx')
return app, swapper
app, swapper = prepare_face_app()
def run_async(func):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
executor = ThreadPoolExecutor(max_workers=1)
result = loop.run_in_executor(executor, func)
return loop.run_until_complete(result)
async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
image = await client.text_to_image(
prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
num_inference_steps=steps, model=model
)
return image, seed
except Exception as e:
return f"Error al generar imagen: {e}", None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor
)
return result[1] if isinstance(result, list) and len(result) > 1 else None
except Exception as e:
return None
def save_prompt(prompt_text, seed):
try:
prompt_file_path = DATA_PATH / f"prompt_{seed}.txt"
with open(prompt_file_path, "w") as prompt_file:
prompt_file.write(prompt_text)
return prompt_file_path
except Exception as e:
st.error(f"Error al guardar el prompt: {e}")
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language):
combined_prompt = prompt
if process_enhancer:
improved_prompt = await improve_prompt(prompt, language)
combined_prompt = f"{prompt} {improved_prompt}"
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
progress_bar = st.progress(0)
image, seed = await generate_image(combined_prompt, basemodel, width, height, scales, steps, seed)
progress_bar.progress(50)
if isinstance(image, str) and image.startswith("Error"):
progress_bar.empty()
return [image, None, combined_prompt]
image_path = save_image(image, seed)
prompt_file_path = save_prompt(combined_prompt, seed)
if process_upscale:
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
if upscale_image_path:
upscale_image = Image.open(upscale_image_path)
upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
progress_bar.progress(100)
image_path.unlink()
return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)]
else:
progress_bar.empty()
return [str(image_path), str(prompt_file_path)]
else:
progress_bar.progress(100)
return [str(image_path), str(prompt_file_path)]
async def improve_prompt(prompt, language):
try:
instruction_en = "With this idea, describe in English a detailed txt2img prompt in 500 characters at most, add illumination, atmosphere, cinematic elements, and characters if need it..."
instruction_es = "Con esta idea, describe en espa帽ol un prompt detallado de txt2img en un m谩ximo de 500 caracteres, con iluminaci贸n, atm贸sfera, elementos cinematogr谩ficos y en su caso personajes..."
instruction = instruction_en if language == "en" else instruction_es
formatted_prompt = f"{prompt}: {instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=500)
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
return improved_text[:500] if len(improved_text) > 500 else improved_text
except Exception as e:
return f"Error mejorando el prompt: {e}"
def save_image(image, seed):
try:
image_path = DATA_PATH / f"image_{seed}.jpg"
image.save(image_path, format="JPEG")
return image_path
except Exception as e:
st.error(f"Error al guardar la imagen: {e}")
return None
def get_storage():
files = [file for file in DATA_PATH.glob("*.jpg") if file.is_file()]
files.sort(key=lambda x: x.stat().st_mtime, reverse=True)
usage = sum([file.stat().st_size for file in files])
return [str(file.resolve()) for file in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB"
def get_prompts():
prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()]
return {file.stem.replace("prompt_", ""): file for file in prompt_files}
def delete_image(image_path):
try:
if Path(image_path).exists():
Path(image_path).unlink()
st.success(f"Imagen {image_path} borrada.")
else:
st.error("El archivo de imagen no existe.")
except Exception as e:
st.error(f"Error al borrar la imagen: {e}")
def authenticate_user(username, password, credentials):
return username == credentials["username"] and password == credentials["password"]
def login_form(credentials):
st.title("Iniciar Sesi贸n")
username, password = st.text_input("Usuario"), st.text_input("Contrase帽a", type="password")
if st.button("Iniciar Sesi贸n") and authenticate_user(username, password, credentials):
st.session_state['authenticated'] = True
def sort_faces(faces):
return sorted(faces, key=lambda x: x.bbox[0])
def get_face(faces, face_id):
if not faces: raise ValueError("No se encontraron rostros.")
if len(faces) < face_id or face_id < 1:
raise ValueError(f"Solo hay {len(faces)} rostros, pediste el {face_id}.")
return faces[face_id - 1]
def swap_faces(source_image, source_face_index, destination_image):
faces = sort_faces(app.get(source_image))
source_face = get_face(faces, source_face_index)
res_faces = sort_faces(app.get(destination_image))
res_face = get_face(res_faces, 1)
result = swapper.get(destination_image, res_face, source_face, paste_back=True)
return result
def main():
st.set_page_config(layout="wide")
login_form(credentials)
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
st.warning("Por favor, inicia sesi贸n para acceder a la aplicaci贸n.")
return
prompt = st.sidebar.text_input("Descripci贸n de la imagen", max_chars=900)
process_enhancer = st.sidebar.checkbox("Mejorar Prompt", value=False)
language = st.sidebar.selectbox("Idioma", ["en", "es"])
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-DEV", "black-forest-labs/FLUX.1-schnell"])
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
process_upscale = st.sidebar.checkbox("Procesar Escalador", value=False)
upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
scales = st.sidebar.slider("Escalado", 1, 20, 10)
steps = st.sidebar.slider("Pasos", 1, 100, 20)
seed = st.sidebar.number_input("Semilla", value=-1)
width, height = (1080, 1920) if format_option == "9:16" else (1920, 1080)
if st.sidebar.button("Generar Imagen"):
with st.spinner("Generando..."):
# Llamada a la funci贸n asincr贸nica desde un evento
image_path, prompt_file_path = asyncio.run(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language))
if image_path:
st.image(image_path, caption="Imagen Generada", use_column_width=True)
st.download_button("Descargar Imagen", image_path)
if st.sidebar.button("Ver Almacenamiento"):
files, usage = get_storage()
st.write(usage)
for file in files:
st.write(file)
if st.sidebar.button("Ver Prompts"):
prompts = get_prompts()
for key, path in prompts.items():
st.write(f"{key}: {path}")
if st.sidebar.button("Borrar Imagen"):
image_to_delete = st.sidebar.text_input("Ruta de la imagen a borrar")
if image_to_delete:
delete_image(image_to_delete)
if __name__ == "__main__":
main() |