Sakalti commited on
Commit
c9e12b8
·
verified ·
1 Parent(s): f4d7511

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # モデルとトークナイザーの読み込み
6
+ model_name = "Sakalti/Baku"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, ignore_mismatched_sizes=True)
9
+
10
+ # 応答を生成する関数
11
+ def respond(message, history, max_tokens, temperature, top_p):
12
+ # 入力履歴と新しいメッセージを連結
13
+ if history is None:
14
+ history = []
15
+
16
+ input_text = ""
17
+ for user_message, bot_response in history:
18
+ input_text += f"User: {user_message}\nAssistant: {bot_response}\n"
19
+ input_text += f"User: {message}\nAssistant:"
20
+
21
+ # トークナイズ
22
+ inputs = tokenizer(input_text, return_tensors="pt")
23
+
24
+ # モデルによる応答生成
25
+ with torch.no_grad():
26
+ outputs = model.generate(
27
+ inputs.input_ids,
28
+ max_length=inputs.input_ids.shape[1] + max_tokens,
29
+ do_sample=True,
30
+ top_p=top_p,
31
+ temperature=temperature,
32
+ )
33
+
34
+ # 応答をデコード
35
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
36
+ # 最後のユーザー入力以降の応答部分を抽出
37
+ response = response.split("Assistant:")[-1].strip()
38
+
39
+ # 応答と履歴を更新
40
+ history.append((message, response))
41
+ return response, history
42
+
43
+ # Gradioインターフェースの設定
44
+ with gr.Blocks() as demo:
45
+ gr.Markdown("## AIチャット")
46
+ chatbot = gr.Chatbot()
47
+ msg = gr.Textbox(label="あなたのメッセージ", placeholder="ここにメッセージを入力...")
48
+ max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max new tokens")
49
+ temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
50
+ top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
51
+ send_button = gr.Button("送信")
52
+ clear = gr.Button("クリア")
53
+
54
+ def clear_history():
55
+ return [], []
56
+
57
+ send_button.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, chatbot])
58
+ clear.click(clear_history, outputs=[chatbot])
59
+
60
+ demo.launch()