Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# モデルとトークナイザーの読み込み
|
6 |
+
model_name = "Sakalti/Baku"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, ignore_mismatched_sizes=True)
|
9 |
+
|
10 |
+
# 応答を生成する関数
|
11 |
+
def respond(message, history, max_tokens, temperature, top_p):
|
12 |
+
# 入力履歴と新しいメッセージを連結
|
13 |
+
if history is None:
|
14 |
+
history = []
|
15 |
+
|
16 |
+
input_text = ""
|
17 |
+
for user_message, bot_response in history:
|
18 |
+
input_text += f"User: {user_message}\nAssistant: {bot_response}\n"
|
19 |
+
input_text += f"User: {message}\nAssistant:"
|
20 |
+
|
21 |
+
# トークナイズ
|
22 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
23 |
+
|
24 |
+
# モデルによる応答生成
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model.generate(
|
27 |
+
inputs.input_ids,
|
28 |
+
max_length=inputs.input_ids.shape[1] + max_tokens,
|
29 |
+
do_sample=True,
|
30 |
+
top_p=top_p,
|
31 |
+
temperature=temperature,
|
32 |
+
)
|
33 |
+
|
34 |
+
# 応答をデコード
|
35 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
# 最後のユーザー入力以降の応答部分を抽出
|
37 |
+
response = response.split("Assistant:")[-1].strip()
|
38 |
+
|
39 |
+
# 応答と履歴を更新
|
40 |
+
history.append((message, response))
|
41 |
+
return response, history
|
42 |
+
|
43 |
+
# Gradioインターフェースの設定
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("## AIチャット")
|
46 |
+
chatbot = gr.Chatbot()
|
47 |
+
msg = gr.Textbox(label="あなたのメッセージ", placeholder="ここにメッセージを入力...")
|
48 |
+
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max new tokens")
|
49 |
+
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
50 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
51 |
+
send_button = gr.Button("送信")
|
52 |
+
clear = gr.Button("クリア")
|
53 |
+
|
54 |
+
def clear_history():
|
55 |
+
return [], []
|
56 |
+
|
57 |
+
send_button.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, chatbot])
|
58 |
+
clear.click(clear_history, outputs=[chatbot])
|
59 |
+
|
60 |
+
demo.launch()
|