|
import os |
|
import gradio as gr |
|
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification |
|
|
|
HF_TOKEN = os.environ.get('HF_TOKEN') |
|
|
|
model_checkpoint = "besijar/dspa_review_classification" |
|
tokeniser = AutoTokenizer.from_pretrained(model_checkpoint, use_auth_token=HF_TOKEN) |
|
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint, use_auth_token=HF_TOKEN) |
|
|
|
example_review = "Tully's House Blend is the perfect K-Cup for me. Sure, I occasionally enjoy the special flavors.....Mocha, Italian roast, French vanilla, but my favorite 'go-to'coffee is House Blend. Wakes me up in the morning with it's coffee house full hearty taste." |
|
|
|
def review_classify(review): |
|
review = tokeniser.encode(review) |
|
review = model.predict([review]) |
|
return int(review.logits.argmax()) |
|
|
|
iface = gr.Interface(review_classify, |
|
title="Review Classification using DistilRoBERTa", |
|
inputs=[gr.Text(label="Review")], |
|
outputs=[gr.Number(label="Rating", precision=0)], |
|
examples=[example_review]) |
|
iface.launch() |