Spaces:
Runtime error
Runtime error
import os | |
import chainlit as cl | |
from dotenv import load_dotenv | |
from numpy import arange | |
from operator import itemgetter | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain import text_splitter | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_huggingface import HuggingFaceEndpointEmbeddings | |
from langchain_core.prompts import PromptTemplate | |
from langchain.schema.output_parser import StrOutputParser | |
from langchain.schema.runnable import RunnablePassthrough | |
from langchain.schema.runnable.config import RunnableConfig | |
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE # | |
# ---- ENV VARIABLES ---- # | |
""" | |
This function will load our environment file (.env) if it is present. | |
NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there. | |
""" | |
load_dotenv() | |
""" | |
We will load our environment variables here. | |
""" | |
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"] | |
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"] | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
# ---- GLOBAL DECLARATIONS ---- # | |
# added for Docker purposes compared to run chainlit app | |
DATA_DIR = "./data" | |
VECTORSTORE_DIR = os.path.join(DATA_DIR, "vectorstore") | |
VECTORSTORE_PATH = os.path.join(VECTORSTORE_DIR, "index.faiss") | |
# -- RETRIEVAL -- # | |
""" | |
1. Load Documents from Text File | |
2. Split Documents into Chunks | |
3. Load HuggingFace Embeddings (remember to use the URL we set above) | |
4. Index Files if they do not exist, otherwise load the vectorstore | |
""" | |
### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS | |
### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN. | |
# wget --no-check-certificate 'https://drive.google.com/uc?id=1tGmnWoO-wtU_bTs_M1GVXrTB5Su61zLg' -O data/finantial_report.pdf | |
# loader = PyPDFLoader("/home/sahane/AIE3/Week 4/Day 1/Airbnb-10K/data/finantial_report.pdf") | |
# changed for Docker purpose | |
loader = PyPDFLoader("./data/finantial_report.pdf") | |
pages = loader.load_and_split() | |
# I noticed the the first two pages could be not included' | |
text_content=[] | |
[text_content.append((pages[i].page_content.replace('Table of Contents\n', ''), {'page source': i})) for i in arange(2,len(pages))] | |
# There are some expression that could help structured and unstructured texts be separated | |
import re | |
# Regular expression patterns for identifying structured and unstructured sections | |
structured_pattern = re.compile(r"\(in millions(?:, except\b.*)?\)|\b(unaudited)\b|\bBalance Sheet\b|\bIncome Statement\b|\bCash Flows\b|\bfollowing table\b", re.IGNORECASE) | |
# Split the text content | |
structured_data = [] | |
unstructured_data = [] | |
for text in text_content: | |
if structured_pattern.search(text[0]): | |
structured_data.append(text[0] + str(text[1])) | |
else: | |
unstructured_data.append(text[0] + str(text[1])) | |
#Alldoc = text_splitter.create_documents(structured_data + unstructured_data) | |
from langchain.schema import Document | |
documents = [] | |
for idx, text in enumerate(structured_data + unstructured_data): | |
document = Document(id=idx, page_content=text) | |
documents.append(document) | |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200) | |
# split_chunks = text_splitter.split_documents(Alldoc) | |
split_chunks = text_splitter.split_documents(documents) | |
### 3. LOAD HUGGINGFACE EMBEDDINGS | |
hf_embeddings = HuggingFaceEndpointEmbeddings( | |
model=HF_EMBED_ENDPOINT, | |
task="feature-extraction", | |
huggingfacehub_api_token=os.environ["HF_TOKEN"], | |
) | |
## Prevent re-indexing if vectorstores already exists | |
if os.path.exists(VECTORSTORE_PATH): | |
vectorstore = FAISS.load_local( | |
VECTORSTORE_DIR,#"./data/vectorstore", | |
hf_embeddings, | |
allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file. | |
) | |
hf_retriever = vectorstore.as_retriever() | |
print("Loaded Vectorstore") | |
else: | |
print("Indexing Files") | |
os.makedirs(VECTORSTORE_DIR, exist_ok=True) | |
### 4. INDEX FILES | |
### NOTE: REMEMBER TO BATCH THE DOCUMENTS WITH MAXIMUM BATCH SIZE = 32 | |
for i in range(0, len(split_chunks), 32): | |
if i == 0: | |
vectorstore = FAISS.from_documents(split_chunks[i:i+32], hf_embeddings) | |
continue | |
vectorstore.add_documents(split_chunks[i:i+32]) | |
vectorstore.save_local(VECTORSTORE_DIR) | |
hf_retriever = vectorstore.as_retriever() | |
# -- AUGMENTED -- # | |
""" | |
1. Define a String Template | |
2. Create a Prompt Template from the String Template | |
""" | |
### 1. DEFINE STRING TEMPLATE | |
RAG_PROMPT_TEMPLATE = """\ | |
<|start_header_id|>system<|end_header_id|> | |
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context,\ | |
say you don't know.<|eot_id|> | |
<|start_header_id|>user<|end_header_id|> | |
User Query: | |
{query} | |
Context: | |
{context}<|eot_id|> | |
<|start_header_id|>assistant<|end_header_id|> | |
""" | |
#Note that we do not have the response here. We have assistent, we ONLY start, but not followed by <|eot_id> as we do not have a response YET. | |
### 2. CREATE PROMPT TEMPLATE | |
rag_prompt =PromptTemplate.from_template(RAG_PROMPT_TEMPLATE) | |
# -- GENERATION -- # | |
""" | |
1. Create a HuggingFaceEndpoint for the LLM | |
""" | |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM | |
hf_llm = HuggingFaceEndpoint( | |
endpoint_url=f"{HF_LLM_ENDPOINT}", | |
max_new_tokens=512, | |
top_k=10, | |
top_p=0.95, | |
typical_p=0.95, | |
temperature=0.01, | |
repetition_penalty=1.03, | |
huggingfacehub_api_token=os.environ["HF_TOKEN"] | |
) | |
def rename(original_author: str): | |
""" | |
This function can be used to rename the 'author' of a message. | |
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'. | |
""" | |
rename_dict = { | |
"Assistant" : "Airbnb 10k Bot" | |
} | |
return rename_dict.get(original_author, original_author) | |
async def start_chat(): | |
""" | |
This function will be called at the start of every user session. | |
We will build our LCEL RAG chain here, and store it in the user session. | |
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. | |
""" | |
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT | |
lcel_rag_chain = ( {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")} | |
| rag_prompt | hf_llm | |
) | |
cl.user_session.set("lcel_rag_chain", lcel_rag_chain) | |
async def main(message: cl.Message): | |
""" | |
This function will be called every time a message is recieved from a session. | |
We will use the LCEL RAG chain to generate a response to the user query. | |
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. | |
""" | |
lcel_rag_chain = cl.user_session.get("lcel_rag_chain") | |
msg = cl.Message(content="") | |
async for chunk in lcel_rag_chain.astream( | |
{"query": message.content}, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
await msg.stream_token(chunk) | |
await msg.send() | |
# docker build -t airbnb-llm-chainrag-chainlit-hfs . |