sahal56's picture
Upload 6 files
bdfece4
import streamlit as st
import joblib
import pandas as pd
import numpy as np
model=joblib.load(open('CarPricePredictor','rb'))
car=pd.read_csv('newCar.csv')
st.title('Car Price Predictor')
st.subheader('Select the details')
col1, col2, col3, col4 = st.columns(4)
with col1:
companies=sorted(car['company'].unique())
company = st.selectbox("Company:", companies)
with col2:
car_models=sorted(car[car.name.str.startswith(company)]['name'].unique())
car_model = st.selectbox("Model:", car_models)
with col3:
years=sorted(car['year'].unique(),reverse=True)
year = st.selectbox("Year:", years)
with col4:
fuels=car['fuel_type'].unique()
fuel_type = st.selectbox("Fuel Type:", fuels)
driven = st.number_input('Kilometres travelled:')
if st.button('Predict'):
if not car_model or not company or not year or not driven or not fuel_type:
st.warning('Select Properly')
else:
st.balloons()
prediction=model.predict(pd.DataFrame(columns=['name', 'company', 'year', 'kms_driven', 'fuel_type'],
data=np.array([car_model,company,year,driven,fuel_type]).reshape(1, 5)))
prediction=prediction[0].astype(str)
st.text('₹ ' + prediction)