|
import gradio as gr |
|
from fastai.vision.all import * |
|
import pathlib |
|
plt = platform.system() |
|
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath |
|
learn = load_learner('model.pkl') |
|
|
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Shirt Fit Classifier" |
|
description = "A Loose vs. Fitted shirt classifier" |
|
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" |
|
examples = ['demo1.jpg', 'demo2.jpg', 'demo3.jpg', 'demo4.jpg'] |
|
interpretation='default' |
|
enable_queue=True |
|
|
|
gr.Interface(fn=predict, |
|
inputs=gr.inputs.Image(shape=(300, 300)), |
|
outputs=gr.outputs.Label(num_top_classes=2), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
interpretation=interpretation, |
|
enable_queue=enable_queue).launch() |