Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import random
|
4 |
+
import itertools
|
5 |
+
import warnings
|
6 |
+
import logging
|
7 |
+
warnings.filterwarnings('ignore')
|
8 |
+
logging.disable(logging.WARNING)
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
from tqdm.auto import tqdm
|
12 |
+
import tokenizers
|
13 |
+
import transformers
|
14 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModel, T5EncoderModel, get_linear_schedule_with_warmup
|
15 |
+
import datasets
|
16 |
+
from datasets import load_dataset, load_metric
|
17 |
+
import sentencepiece
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
from torch.utils.data import Dataset, DataLoader
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torch.nn as nn
|
23 |
+
import pickle
|
24 |
+
import time
|
25 |
+
from sklearn.preprocessing import MinMaxScaler
|
26 |
+
from datasets.utils.logging import disable_progress_bar
|
27 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
28 |
+
disable_progress_bar()
|
29 |
+
import streamlit as st
|
30 |
+
|
31 |
+
st.title('predictyield-t5')
|
32 |
+
st.markdown('### At this space, you can predict the yields of reactions from their inputs.')
|
33 |
+
st.markdown('### The format of the string is like "REACTANT:{reactants of the reaction}REAGENT:{reagents, catalysts, or solvents of the reaction}PRODUCT:{products of the reaction}".')
|
34 |
+
st.markdown('### If there are no reagents or catalysts, fill the blank with a space. And if there are multiple reactants, concatenate them with "."')
|
35 |
+
display_text = 'input the reaction smiles (e.g. REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F'
|
36 |
+
|
37 |
+
|
38 |
+
class CFG():
|
39 |
+
data = st.text_area(display_text)
|
40 |
+
pretrained_model_name_or_path = 'sagawa/ZINC-t5'
|
41 |
+
model = 't5'
|
42 |
+
model_name_or_path = './'
|
43 |
+
max_len = 512
|
44 |
+
batch_size = 5
|
45 |
+
fc_dropout = 0.1
|
46 |
+
seed = 42
|
47 |
+
|
48 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
49 |
+
|
50 |
+
|
51 |
+
def seed_everything(seed=42):
|
52 |
+
random.seed(seed)
|
53 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
54 |
+
np.random.seed(seed)
|
55 |
+
torch.manual_seed(seed)
|
56 |
+
torch.cuda.manual_seed(seed)
|
57 |
+
torch.backends.cudnn.deterministic = True
|
58 |
+
seed_everything(seed=CFG.seed)
|
59 |
+
|
60 |
+
CFG.tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
61 |
+
|
62 |
+
def prepare_input(cfg, text):
|
63 |
+
inputs = cfg.tokenizer(text, add_special_tokens=True, max_length=CFG.max_len, padding='max_length', return_offsets_mapping=False, truncation=True, return_attention_mask=True)
|
64 |
+
for k, v in inputs.items():
|
65 |
+
inputs[k] = torch.tensor(v, dtype=torch.long)
|
66 |
+
|
67 |
+
return inputs
|
68 |
+
|
69 |
+
class TestDataset(Dataset):
|
70 |
+
def __init__(self, cfg, df):
|
71 |
+
self.cfg = cfg
|
72 |
+
self.inputs = df['input'].values
|
73 |
+
|
74 |
+
def __len__(self):
|
75 |
+
return len(self.inputs)
|
76 |
+
|
77 |
+
def __getitem__(self, item):
|
78 |
+
inputs = prepare_input(self.cfg, self.inputs[item])
|
79 |
+
|
80 |
+
return inputs
|
81 |
+
|
82 |
+
|
83 |
+
class RegressionModel(nn.Module):
|
84 |
+
def __init__(self, cfg, config_path=None, pretrained=False):
|
85 |
+
super().__init__()
|
86 |
+
self.cfg = cfg
|
87 |
+
if config_path is None:
|
88 |
+
self.config = AutoConfig.from_pretrained(cfg.pretrained_model_name_or_path, output_hidden_states=True)
|
89 |
+
else:
|
90 |
+
self.config = torch.load(config_path)
|
91 |
+
if pretrained:
|
92 |
+
if 't5' in cfg.pretrained_model_name_or_path:
|
93 |
+
self.model = T5EncoderModel.from_pretrained(CFG.pretrained_model_name_or_path)
|
94 |
+
else:
|
95 |
+
self.model = AutoModel.from_pretrained(CFG.pretrained_model_name_or_path)
|
96 |
+
else:
|
97 |
+
if 't5' in cfg.model_name_or_path:
|
98 |
+
self.model = T5EncoderModel.from_pretrained('sagawa/ZINC-t5')
|
99 |
+
else:
|
100 |
+
self.model = AutoModel.from_config(self.config)
|
101 |
+
self.model.resize_token_embeddings(len(cfg.tokenizer))
|
102 |
+
self.fc_dropout1 = nn.Dropout(cfg.fc_dropout)
|
103 |
+
self.fc1 = nn.Linear(self.config.hidden_size, self.config.hidden_size)
|
104 |
+
self.fc_dropout2 = nn.Dropout(cfg.fc_dropout)
|
105 |
+
self.fc2 = nn.Linear(self.config.hidden_size, 1)
|
106 |
+
|
107 |
+
def forward(self, inputs):
|
108 |
+
outputs = self.model(**inputs)
|
109 |
+
last_hidden_states = outputs[0]
|
110 |
+
output = self.fc1(self.fc_dropout1(last_hidden_states)[:, 0, :].view(-1, self.config.hidden_size))
|
111 |
+
output = self.fc2(self.fc_dropout2(output))
|
112 |
+
return output
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
def inference_fn(test_loader, model, device):
|
117 |
+
preds = []
|
118 |
+
model.eval()
|
119 |
+
model.to(device)
|
120 |
+
tk0 = tqdm(test_loader, total=len(test_loader))
|
121 |
+
for inputs in tk0:
|
122 |
+
for k, v in inputs.items():
|
123 |
+
inputs[k] = v.to(device)
|
124 |
+
with torch.no_grad():
|
125 |
+
y_preds = model(inputs)
|
126 |
+
preds.append(y_preds.to('cpu').numpy())
|
127 |
+
predictions = np.concatenate(preds)
|
128 |
+
return predictions
|
129 |
+
|
130 |
+
model = RegressionModel(CFG, config_path=CFG.model_name_or_path + '/config.pth', pretrained=False)
|
131 |
+
state = torch.load(CFG.model_name_or_path + '/ZINC-t5_best.pth', map_location=torch.device('cpu'))
|
132 |
+
model.load_state_dict(state)
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
test_ds = pd.DataFrame.from_dict({'input': CFG.data}, orient='index').T
|
137 |
+
test_dataset = TestDataset(CFG, test_ds)
|
138 |
+
test_loader = DataLoader(test_dataset,
|
139 |
+
batch_size=1,
|
140 |
+
shuffle=False,
|
141 |
+
num_workers=CFG.num_workers, pin_memory=True, drop_last=False)
|
142 |
+
|
143 |
+
|
144 |
+
prediction = inference_fn(test_loader, model, device)
|
145 |
+
prediction = max(min(prediction[0][0]*100, 100), 0)
|
146 |
+
st.text('yiled: '+ str(prediction))
|
147 |
+
|