Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -13,10 +13,6 @@ import yaml
|
|
13 |
with open('config.yaml', 'r') as file:
|
14 |
config = yaml.safe_load(file)
|
15 |
|
16 |
-
# Debug: Print the structure of the config
|
17 |
-
print("Config structure:")
|
18 |
-
print(yaml.dump(config, default_flow_style=False))
|
19 |
-
|
20 |
# Authenticate using the token stored in Hugging Face Spaces secrets
|
21 |
if 'HF_TOKEN' in os.environ:
|
22 |
login(token=os.environ['HF_TOKEN'])
|
@@ -24,22 +20,12 @@ else:
|
|
24 |
raise ValueError("HF_TOKEN not found in environment variables. Please add it to your Space's secrets.")
|
25 |
|
26 |
# Correctly access the config values
|
27 |
-
|
28 |
-
base_model = config['config']['model']['name_or_path']
|
29 |
-
except KeyError:
|
30 |
-
print("Could not find 'config' -> 'model' -> 'name_or_path' in the config file.")
|
31 |
-
print("Available keys in config:", list(config.keys()))
|
32 |
-
if 'config' in config:
|
33 |
-
print("Available keys in config['config']:", list(config['config'].keys()))
|
34 |
-
base_model = "FLUX.1-dev" # Default value
|
35 |
|
|
|
36 |
lora_model = "sagar007/sagar_flux" # This isn't in the config, so we're keeping it as is
|
|
|
37 |
|
38 |
-
try:
|
39 |
-
trigger_word = config['config']['trigger_word']
|
40 |
-
except KeyError:
|
41 |
-
print("Could not find 'config' -> 'trigger_word' in the config file.")
|
42 |
-
trigger_word = "sagar"
|
43 |
# Global variables
|
44 |
pipe = None
|
45 |
cache = {}
|
@@ -143,9 +129,9 @@ load_cache()
|
|
143 |
# Pre-generate and cache example images
|
144 |
def cache_example_images():
|
145 |
for prompt in example_prompts:
|
146 |
-
run_lora(prompt,
|
147 |
-
|
148 |
-
|
149 |
|
150 |
# Gradio interface setup
|
151 |
with gr.Blocks() as app:
|
@@ -158,14 +144,14 @@ with gr.Blocks() as app:
|
|
158 |
with gr.Column():
|
159 |
result = gr.Image(label="Result")
|
160 |
with gr.Row():
|
161 |
-
cfg_scale = gr.Slider(minimum=1, maximum=20, value=
|
162 |
-
steps = gr.Slider(minimum=1, maximum=100, value=
|
163 |
with gr.Row():
|
164 |
-
width = gr.Slider(minimum=128, maximum=1024, value=
|
165 |
-
height = gr.Slider(minimum=128, maximum=1024, value=
|
166 |
with gr.Row():
|
167 |
-
seed = gr.Number(label="Seed", value=
|
168 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=
|
169 |
lora_scale = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label="LoRA Scale")
|
170 |
|
171 |
example_dropdown.change(update_prompt, inputs=[example_dropdown], outputs=[prompt])
|
|
|
13 |
with open('config.yaml', 'r') as file:
|
14 |
config = yaml.safe_load(file)
|
15 |
|
|
|
|
|
|
|
|
|
16 |
# Authenticate using the token stored in Hugging Face Spaces secrets
|
17 |
if 'HF_TOKEN' in os.environ:
|
18 |
login(token=os.environ['HF_TOKEN'])
|
|
|
20 |
raise ValueError("HF_TOKEN not found in environment variables. Please add it to your Space's secrets.")
|
21 |
|
22 |
# Correctly access the config values
|
23 |
+
process_config = config['config']['process'][0] # Assuming the first process is the one we want
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
base_model = process_config['model']['name_or_path']
|
26 |
lora_model = "sagar007/sagar_flux" # This isn't in the config, so we're keeping it as is
|
27 |
+
trigger_word = process_config['trigger_word']
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
# Global variables
|
30 |
pipe = None
|
31 |
cache = {}
|
|
|
129 |
# Pre-generate and cache example images
|
130 |
def cache_example_images():
|
131 |
for prompt in example_prompts:
|
132 |
+
run_lora(prompt, process_config['sample']['guidance_scale'], process_config['sample']['sample_steps'],
|
133 |
+
process_config['sample']['walk_seed'], process_config['sample']['seed'],
|
134 |
+
process_config['sample']['width'], process_config['sample']['height'], 0.75)
|
135 |
|
136 |
# Gradio interface setup
|
137 |
with gr.Blocks() as app:
|
|
|
144 |
with gr.Column():
|
145 |
result = gr.Image(label="Result")
|
146 |
with gr.Row():
|
147 |
+
cfg_scale = gr.Slider(minimum=1, maximum=20, value=process_config['sample']['guidance_scale'], step=0.1, label="CFG Scale")
|
148 |
+
steps = gr.Slider(minimum=1, maximum=100, value=process_config['sample']['sample_steps'], step=1, label="Steps")
|
149 |
with gr.Row():
|
150 |
+
width = gr.Slider(minimum=128, maximum=1024, value=process_config['sample']['width'], step=64, label="Width")
|
151 |
+
height = gr.Slider(minimum=128, maximum=1024, value=process_config['sample']['height'], step=64, label="Height")
|
152 |
with gr.Row():
|
153 |
+
seed = gr.Number(label="Seed", value=process_config['sample']['seed'], precision=0)
|
154 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=process_config['sample']['walk_seed'])
|
155 |
lora_scale = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label="LoRA Scale")
|
156 |
|
157 |
example_dropdown.change(update_prompt, inputs=[example_dropdown], outputs=[prompt])
|