File size: 10,317 Bytes
6c2fd08 4ca155b 02cf0bb 85585aa 25893d0 324c98e aaa17ba 4ca155b aaa17ba 4ca155b aaa17ba 4ca155b aaa17ba 4ca155b aaa17ba 4ca155b aaa17ba 02cf0bb 4ca155b 02cf0bb aaa17ba 5ae24e1 02cf0bb 6c2fd08 c78be87 aaa17ba c78be87 aaa17ba 324c98e aaa17ba 85585aa aaa17ba 02cf0bb aaa17ba 0be31e9 bdc217e 0be31e9 bdc217e aaa17ba 85585aa aaa17ba 25893d0 bdc217e c78be87 25893d0 bdc217e 25893d0 c78be87 bdc217e 25893d0 bdc217e 324c98e 25893d0 324c98e bdc217e 25893d0 bdc217e 25893d0 bdc217e 25893d0 324c98e bdc217e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
import asyncio
# Model Configuration
class GPTConfig:
def __init__(self):
self.block_size = 1024
self.vocab_size = 50304
self.n_layer = 12
self.n_head = 12
self.n_embd = 768
# Causal Self-Attention
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.c_proj(y)
# Multi-Layer Perceptron
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
# Transformer Block
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
# GPT Model
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# Load Model
def load_model(model_path):
config = GPTConfig()
model = GPT(config)
try:
checkpoint = torch.load(model_path, map_location=torch.device('cpu')) # Load on CPU first
except FileNotFoundError:
raise FileNotFoundError(f"Model file not found at: {model_path}")
except Exception as e:
raise Exception(f"Error loading model: {e}")
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.eval()
return model
# Text Post-processing
def post_process_text(text):
text = text.capitalize()
sentences = text.split('.')
complete_sentences = sentences[:-1] if len(sentences) > 1 else sentences
processed_text = '. '.join(complete_sentences)
if not processed_text.endswith('.'):
processed_text += '.'
return processed_text
# Text Generation Function (Asynchronous)
async def generate_text(prompt, max_length=432, temperature=0.8, top_k=40):
enc = tiktoken.get_encoding('gpt2')
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device)
generated = []
with torch.no_grad():
for _ in range(max_length):
try:
outputs, _ = model(input_ids)
next_token_logits = outputs[:, -1, :]
next_token_logits = next_token_logits / temperature
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
next_token_probs = F.softmax(top_k_logits, dim=-1)
next_token_index = torch.multinomial(next_token_probs, num_samples=1)
next_token = top_k_indices.gather(-1, next_token_index)
input_ids = torch.cat([input_ids, next_token], dim=-1)
generated.append(next_token.item())
next_token_str = enc.decode([next_token.item()])
yield next_token_str
if next_token.item() == enc.encode('\n')[0] and len(generated) > 100:
break
await asyncio.sleep(0.02) # For typing effect
except Exception as e:
yield f"Error during generation: {e}"
return
# Gradio Generate Function
async def gradio_generate(prompt, max_length, temperature, top_k):
output = ""
async for token in generate_text(prompt, max_length, temperature, top_k):
output += token
yield output
output = post_process_text(output)
yield output
# Load the model (replace with your model path
css = """
<style>
body {
background-color: #0f1624;
color: #e0e0e0;
font-family: 'Courier New', monospace;
background-image:
radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px),
radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px),
radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px),
radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px);
background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px;
background-position: 0 0, 40px 60px, 130px 270px, 70px 100px;
animation: backgroundScroll 60s linear infinite;
}
@keyframes backgroundScroll {
0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; }
100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; }
}
.container { max-width: 800px; margin: 0 auto; padding: 20px; }
.header {
text-align: center;
margin-bottom: 30px;
font-family: 'Copperplate', fantasy;
color: #ffd700;
text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700;
}
.chat-box {
background-color: rgba(42, 42, 42, 0.7);
border-radius: 15px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 0 20px rgba(255, 215, 0, 0.3);
}
.user-input {
background-color: rgba(58, 58, 58, 0.8);
border: 2px solid #ffd700;
color: #ffffff;
padding: 10px;
border-radius: 5px;
width: 100%;
transition: all 0.3s ease;
}
.user-input:focus {
box-shadow: 0 0 15px #ffd700;
}
.generate-btn {
background-color: #ffd700;
color: #0f1624;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
font-weight: bold;
transition: all 0.3s ease;
}
.generate-btn:hover {
background-color: #ffec8b;
transform: scale(1.05);
}
.output-box {
background-color: rgba(42, 42, 42, 0.7);
border-radius: 15px;
padding: 20px;
margin-top: 20px;
min-height: 100px;
border: 1px solid #ffd700;
white-space: pre-wrap;
font-family: 'Georgia', serif;
line-height: 1.6;
box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3);
}
.gr-slider {
--slider-color: #ffd700;
}
.gr-box {
border-color: #ffd700;
background-color: rgba(42, 42, 42, 0.7);
}
</style>
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<div class='header'><h1>π Enchanted Tales Generator π</h1></div>")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')",
label="Story Incantation",
elem_classes="user-input"
)
with gr.Column(scale=1):
generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn")
with gr.Row():
max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length")
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity")
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity")
output = gr.Markdown(elem_classes="output-box")
generate_btn.click(
gradio_generate,
inputs=[prompt, max_length, temperature, top_k],
outputs=output
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;">
"In the realm of imagination, every word is a spell, every sentence a charm."
</div>
""")
if __name__ == "__main__":
demo.launch() |