Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,27 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
-
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import base64
|
8 |
-
from audiocraft.models import MAGNeT
|
9 |
-
from audiocraft.data.audio import audio_write
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
genres = ["Pop","
|
17 |
|
18 |
@st.cache_resource()
|
19 |
def load_model():
|
20 |
-
model =
|
21 |
-
# model = MusicGen.get_pretrained('facebook/audiogen-medium')
|
22 |
return model
|
23 |
-
|
24 |
|
25 |
-
def generate_music_tensors(description, duration: int
|
26 |
model = load_model()
|
27 |
|
28 |
model.set_generation_params(
|
@@ -40,9 +39,8 @@ def generate_music_tensors(description, duration: int, batch_size=1):
|
|
40 |
|
41 |
st.success("Music Generation Complete!")
|
42 |
return output
|
43 |
-
|
44 |
|
45 |
-
def save_audio(samples: torch.Tensor
|
46 |
sample_rate = 30000
|
47 |
save_path = "audio_output"
|
48 |
assert samples.dim() == 2 or samples.dim() == 3
|
@@ -52,9 +50,8 @@ def save_audio(samples: torch.Tensor, filename):
|
|
52 |
samples = samples[None, ...]
|
53 |
|
54 |
for idx, audio in enumerate(samples):
|
55 |
-
audio_path = os.path.join(save_path, f"{
|
56 |
torchaudio.save(audio_path, audio, sample_rate)
|
57 |
-
return audio_path
|
58 |
|
59 |
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
60 |
with open(bin_file, 'rb') as f:
|
@@ -72,49 +69,53 @@ def main():
|
|
72 |
st.title("🎧 AI Composer Medium-Model 🎧")
|
73 |
|
74 |
st.subheader("Craft your perfect melody!")
|
75 |
-
|
76 |
bpm = st.number_input("Enter Speed in BPM", min_value=60)
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
79 |
time_slider = st.slider("Select time duration (In Seconds)", 0, 30, 10)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
melody = st.text_input("Enter Melody or Chord Progression (Optional)", "e.g: C D:min G:7 C, Twinkle Twinkle Little Star")
|
85 |
|
86 |
if st.button('Let\'s Generate 🎶'):
|
87 |
st.text('\n\n')
|
88 |
st.subheader("Generated Music")
|
89 |
-
|
90 |
-
|
|
|
91 |
if selected_genre:
|
92 |
description += f" {selected_genre}"
|
|
|
93 |
if bpm:
|
94 |
description += f" {bpm} BPM"
|
95 |
-
if mood:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
if
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
music_tensors = generate_music_tensors(description, time_slider)
|
105 |
|
|
|
106 |
idx = 0
|
107 |
-
|
108 |
-
# audio_path = save_audio(music_tensors[idx], "audio_output")
|
109 |
-
# audio_file = open(audio_path, 'rb')
|
110 |
-
# audio_bytes = audio_file.read()
|
111 |
-
|
112 |
-
# st.audio(audio_bytes, format='audio/wav')
|
113 |
-
# st.markdown(get_binary_file_downloader_html(audio_path, f'Audio_{idx}'), unsafe_allow_html=True)
|
114 |
-
|
115 |
music_tensor = music_tensors[idx]
|
116 |
-
|
117 |
-
audio_filepath = f'audio_output/audio_{idx}.wav'
|
118 |
audio_file = open(audio_filepath, 'rb')
|
119 |
audio_bytes = audio_file.read()
|
120 |
|
@@ -123,4 +124,6 @@ def main():
|
|
123 |
st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True)
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
-
main()
|
|
|
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
+
from audiocraft.models import MusicGen
|
6 |
import os
|
7 |
import numpy as np
|
8 |
import base64
|
|
|
|
|
9 |
|
10 |
+
# Before
|
11 |
+
batch_size = 64
|
12 |
+
|
13 |
+
# After
|
14 |
+
batch_size = 32
|
15 |
+
torch.cuda.empty_cache()
|
16 |
|
17 |
+
genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop"]
|
18 |
|
19 |
@st.cache_resource()
|
20 |
def load_model():
|
21 |
+
model = MusicGen.get_pretrained('facebook/musicgen-medium')
|
|
|
22 |
return model
|
|
|
23 |
|
24 |
+
def generate_music_tensors(description, duration: int):
|
25 |
model = load_model()
|
26 |
|
27 |
model.set_generation_params(
|
|
|
39 |
|
40 |
st.success("Music Generation Complete!")
|
41 |
return output
|
|
|
42 |
|
43 |
+
def save_audio(samples: torch.Tensor):
|
44 |
sample_rate = 30000
|
45 |
save_path = "audio_output"
|
46 |
assert samples.dim() == 2 or samples.dim() == 3
|
|
|
50 |
samples = samples[None, ...]
|
51 |
|
52 |
for idx, audio in enumerate(samples):
|
53 |
+
audio_path = os.path.join(save_path, f"audio_{idx}.wav")
|
54 |
torchaudio.save(audio_path, audio, sample_rate)
|
|
|
55 |
|
56 |
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
57 |
with open(bin_file, 'rb') as f:
|
|
|
69 |
st.title("🎧 AI Composer Medium-Model 🎧")
|
70 |
|
71 |
st.subheader("Craft your perfect melody!")
|
|
|
72 |
bpm = st.number_input("Enter Speed in BPM", min_value=60)
|
73 |
+
|
74 |
+
text_area = st.text_area('Ex : 80s rock song with guitar and drums')
|
75 |
+
st.text('')
|
76 |
+
# Dropdown for genres
|
77 |
+
selected_genre = st.selectbox("Select Genre", genres)
|
78 |
+
|
79 |
+
st.subheader("2. Select time duration (In Seconds)")
|
80 |
time_slider = st.slider("Select time duration (In Seconds)", 0, 30, 10)
|
81 |
+
# mood = st.selectbox("Select Mood (Optional)", ["Happy", "Sad", "Angry", "Relaxed", "Energetic"], None)
|
82 |
+
# instrument = st.selectbox("Select Instrument (Optional)", ["Piano", "Guitar", "Flute", "Violin", "Drums"], None)
|
83 |
+
# tempo = st.selectbox("Select Tempo (Optional)", ["Slow", "Moderate", "Fast"], None)
|
84 |
+
# melody = st.text_input("Enter Melody or Chord Progression (Optional)", "e.g: C D:min G:7 C, Twinkle Twinkle Little Star")
|
|
|
85 |
|
86 |
if st.button('Let\'s Generate 🎶'):
|
87 |
st.text('\n\n')
|
88 |
st.subheader("Generated Music")
|
89 |
+
|
90 |
+
# Generate audio
|
91 |
+
description = text_area # Initialize description with text_area
|
92 |
if selected_genre:
|
93 |
description += f" {selected_genre}"
|
94 |
+
st.empty() # Hide the selected_genre selectbox after selecting one option
|
95 |
if bpm:
|
96 |
description += f" {bpm} BPM"
|
97 |
+
# if mood:
|
98 |
+
# description += f" {mood}"
|
99 |
+
# st.empty() # Hide the mood selectbox after selecting one option
|
100 |
+
# if instrument:
|
101 |
+
# description += f" {instrument}"
|
102 |
+
# st.empty() # Hide the instrument selectbox after selecting one option
|
103 |
+
# if tempo:
|
104 |
+
# description += f" {tempo}"
|
105 |
+
# st.empty() # Hide the tempo selectbox after selecting one option
|
106 |
+
# if melody:
|
107 |
+
# description += f" {melody}"
|
108 |
+
|
109 |
+
# Clear CUDA memory cache before generating music
|
110 |
+
torch.cuda.empty_cache()
|
111 |
|
112 |
music_tensors = generate_music_tensors(description, time_slider)
|
113 |
|
114 |
+
# Only play the full audio for index 0
|
115 |
idx = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
music_tensor = music_tensors[idx]
|
117 |
+
save_audio(music_tensor)
|
118 |
+
audio_filepath = f'/audio_output/audio_{idx}.wav'
|
119 |
audio_file = open(audio_filepath, 'rb')
|
120 |
audio_bytes = audio_file.read()
|
121 |
|
|
|
124 |
st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True)
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
+
main()
|
128 |
+
|
129 |
+
|