"""Gradio app to validate examples of the FoQA dataset.""" from functools import partial import os from typing import Generator import gradio as gr from datasets import Dataset, load_dataset import logging import pandas as pd import os from dotenv import load_dotenv load_dotenv() logging.basicConfig(level=logging.INFO) logger = logging.getLogger("foqa") # Load the FoQA dataset in the global scope, as it is used in multiple functions foqa = load_dataset( "alexandrainst/foqa", split="train", token=os.getenv("HF_HUB_TOKEN") ) assert isinstance(foqa, Dataset) df = foqa.to_pandas() assert isinstance(df, pd.DataFrame) def main(): def non_validated_samples() -> Generator[tuple[str, str, str], None, None]: """Iterate over non-validated samples in the FoQA dataset. Yields: A tuple (idx, question, answer) of a non-validated sample. """ for idx, sample in df.iterrows(): if sample.validation is None: yield str(idx), sample.question, sample.answers["text"][0] itr = non_validated_samples() idx, question, answer = next(itr) with gr.Blocks(theme="monochrome", title="FoQA validation") as demo: gr.Markdown(""" # FoQA Validation This app automatically fetches examples from the Faroese Question Answering dataset (FoQA), allowing you to annotate whether the question and answer are correct Faroese or not. """) with gr.Row(): with gr.Column(): gr.Markdown("### Sample ID") idx_box = gr.Markdown(value=idx) gr.Markdown("### Question") question_box = gr.Markdown(value=question) gr.Markdown("### Answer") answer_box = gr.Markdown(value=answer) with gr.Column(): correct_btn = gr.Button(value="Correct") incorrect_btn = gr.Button(value="Incorrect") save_results_btn = gr.Button(value="Save results") correct_btn.click( fn=partial(assign_correct, itr=itr), inputs=[idx_box, question_box, answer_box], outputs=[idx_box, question_box, answer_box], ) incorrect_btn.click( fn=partial(assign_incorrect, itr=itr), inputs=[idx_box, question_box, answer_box], outputs=[idx_box, question_box, answer_box], ) save_results_btn.click(fn=partial(save_results)) auth = [ ("admin", os.getenv("ADMIN_PASSWORD")), ("annika", os.getenv("ANNIKA_PASSWORD")), ] demo.launch(auth=auth) def save_results() -> None: """Update the FoQA dataset with the validation status of a sample.""" logger.info("Saving results...") gr.Info(message="Saving results...") Dataset.from_pandas(df, preserve_index=False).push_to_hub( repo_id="alexandrainst/foqa", token=os.getenv("HF_HUB_TOKEN") ) gr.Info(message="Saved results!") logger.info("Saved results.") def assign_correct( idx: str, question: str, answer: str, itr: Generator ) -> tuple[gr.Markdown, gr.Markdown, gr.Markdown]: """Assign the question and answer as correct. Args: idx: The index of the sample to be assigned as correct. question: The question to be assigned as correct. answer: The answer to be assigned as correct. itr: The iterator over non-validated samples. Returns: The updated textboxes. """ gr.Info(message="Assigned sample as correct") logger.info(f"Assigned sample as correct: {question} - {answer}") df.iloc[int(idx)].validation = "correct" idx, question, answer = next(itr) return ( gr.Markdown(value=idx), gr.Markdown(value=question), gr.Markdown(value=answer) ) def assign_incorrect( idx: str, question: str, answer: str, itr: Generator ) -> tuple[gr.Markdown, gr.Markdown, gr.Markdown]: """Assign the question and answer as incorrect. Args: idx: The index of the sample to be assigned as incorrect. question: The question to be assigned as incorrect. answer: The answer to be assigned as incorrect. itr: The iterator over non-validated samples. Returns: The updated textboxes. """ gr.Info(message="Assigned sample as incorrect") logger.info(f"Assigned sample as incorrect: {question} - {answer}") df.iloc[int(idx)].validation = "incorrect" idx, question, answer = next(itr) return ( gr.Markdown(value=idx), gr.Markdown(value=question), gr.Markdown(value=answer) ) if __name__ == "__main__": main()