File size: 5,764 Bytes
a715bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ee91b
a715bd8
 
c2ee91b
 
a715bd8
 
c2ee91b
 
 
 
 
 
 
 
 
 
a715bd8
c2ee91b
a715bd8
c2ee91b
 
a715bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe414ee
1410875
a715bd8
 
 
 
 
 
 
 
 
 
 
fe414ee
 
 
 
 
1410875
a715bd8
33d5720
f74f2ff
 
33d5720
 
a715bd8
 
1410875
a715bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe414ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a715bd8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""Gradio app to validate examples of the FoQA dataset."""

from functools import partial
import os
from typing import Generator
import gradio as gr
from datasets import Dataset, load_dataset
import logging
import pandas as pd
import os
from dotenv import load_dotenv

load_dotenv()

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("foqa")


dataset = load_dataset(
    "alexandrainst/foqa", split="train", token=os.getenv("HF_HUB_TOKEN")
)
assert isinstance(dataset, Dataset)
df = pd.DataFrame(dataset.to_pandas())


def non_validated_samples() -> Generator[tuple[str, str, str], None, None]:
    """Iterate over non-validated samples in the FoQA dataset.

    Yields:
        A tuple (idx, question, answer) of a non-validated sample.
    """
    for idx, sample in df.iterrows():
        if sample.validation is None:
            yield str(idx), sample.question, sample.answers["text"][0]


itr = non_validated_samples()


def main():
    idx, question, answer = next(itr)

    with gr.Blocks(theme="monochrome", title="FoQA validation") as demo:
        gr.Markdown("""
            # FoQA Validation

            This app automatically fetches examples from the Faroese Question Answering
            dataset (FoQA), allowing you to annotate whether the question and answer
            are correct Faroese or not.
        """)
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Sample ID")
                idx_box = gr.Markdown(value=idx)
                gr.Markdown("### Question")
                question_box = gr.Markdown(value=question)
                gr.Markdown("### Answer")
                answer_box = gr.Markdown(value=answer)
            with gr.Column():
                correct_btn = gr.Button(value="Correct")
                incorrect_btn = gr.Button(value="Incorrect")
                incorrect_answer_btn = gr.Button(value="Incorrect Answer")
                save_results_btn = gr.Button(value="Save results")

        correct_btn.click(
            fn=partial(assign_correct, itr=itr),
            inputs=[idx_box, question_box, answer_box],
            outputs=[idx_box, question_box, answer_box],
        )
        incorrect_btn.click(
            fn=partial(assign_incorrect, itr=itr),
            inputs=[idx_box, question_box, answer_box],
            outputs=[idx_box, question_box, answer_box],
        )
        incorrect_answer_btn.click(
            fn=partial(assign_incorrect_answer, itr=itr),
            inputs=[idx_box, question_box, answer_box],
            outputs=[idx_box, question_box, answer_box],
        )
        save_results_btn.click(fn=save_results)

    auth = [
        ("admin", os.environ["ADMIN_PASSWORD"]),
        ("annika", os.environ["ANNIKA_PASSWORD"]),
    ]
    demo.launch(auth=auth)


def save_results() -> None:
    """Update the FoQA dataset with the validation status of a sample."""
    logger.info("Saving results...")
    gr.Info(message="Saving results...")
    Dataset.from_pandas(df, preserve_index=False).push_to_hub(
        repo_id="alexandrainst/foqa", token=os.getenv("HF_HUB_TOKEN")
    )
    gr.Info(message="Saved results!")
    logger.info("Saved results.")


def assign_correct(
    idx: str, question: str, answer: str, itr: Generator
) -> tuple[gr.Markdown, gr.Markdown, gr.Markdown]:
    """Assign the question and answer as correct.

    Args:
        idx:
            The index of the sample to be assigned as correct.
        question:
            The question to be assigned as correct.
        answer:
            The answer to be assigned as correct.
        itr:
            The iterator over non-validated samples.

    Returns:
        The updated textboxes.
    """
    gr.Info(message="Assigned sample as correct")
    logger.info(f"Assigned sample as correct: {question} - {answer}")
    df.iloc[int(idx)].validation = "correct"
    idx, question, answer = next(itr)
    return (
        gr.Markdown(value=idx), gr.Markdown(value=question), gr.Markdown(value=answer)
    )


def assign_incorrect(
    idx: str, question: str, answer: str, itr: Generator
) -> tuple[gr.Markdown, gr.Markdown, gr.Markdown]:
    """Assign the question and answer as incorrect.

    Args:
        idx:
            The index of the sample to be assigned as incorrect.
        question:
            The question to be assigned as incorrect.
        answer:
            The answer to be assigned as incorrect.
        itr:
            The iterator over non-validated samples.

    Returns:
        The updated textboxes.
    """
    gr.Info(message="Assigned sample as incorrect")
    logger.info(f"Assigned sample as incorrect: {question} - {answer}")
    df.iloc[int(idx)].validation = "incorrect"
    idx, question, answer = next(itr)
    return (
        gr.Markdown(value=idx), gr.Markdown(value=question), gr.Markdown(value=answer)
    )


def assign_incorrect_answer(
    idx: str, question: str, answer: str, itr: Generator
) -> tuple[gr.Markdown, gr.Markdown, gr.Markdown]:
    """Assign the answer as incorrect.

    Args:
        idx:
            The index of the sample to be assigned as incorrect.
        question:
            The question to be assigned as incorrect.
        answer:
            The answer to be assigned as incorrect.
        itr:
            The iterator over non-validated samples.

    Returns:
        The updated textboxes.
    """
    gr.Info(message="Assigned sample answer as incorrect")
    logger.info(f"Assigned sample answer as incorrect: {answer}")
    df.iloc[int(idx)].validation = "incorrect-answer"
    idx, question, answer = next(itr)
    return (
        gr.Markdown(value=idx), gr.Markdown(value=question), gr.Markdown(value=answer)
    )


if __name__ == "__main__":
    main()