PDF_READER / app.py
saaketvarma's picture
Update app.py
72edbfa
import base64
import os
from langchain.embeddings.openai import OpenAIEmbeddings
import streamlit as st
from langchain.chains import RetrievalQA
from langchain.document_loaders import PDFMinerLoader
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from streamlit_chat import message
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
import torch
st.set_page_config(layout="wide")
def process_answer(instruction, qa_chain):
response = ''
generated_text = qa_chain.run(instruction)
return generated_text
def get_file_size(file):
file.seek(0, os.SEEK_END)
file_size = file.tell()
file.seek(0)
return file_size
@st.cache_resource
def data_ingestion():
for root, dirs, files in os.walk("docs"):
for file in files:
if file.endswith(".pdf"):
print(file)
loader = PDFMinerLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
splits = text_splitter.split_documents(documents)
# create embeddings here
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = FAISS.from_documents(splits, embeddings)
vectordb.save_local("faiss_index")
@st.cache_resource
def initialize_qa_chain(selected_model):
# Constants
CHECKPOINT = selected_model
TOKENIZER = AutoTokenizer.from_pretrained(CHECKPOINT)
BASE_MODEL = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT, device_map=torch.device('cpu'), torch_dtype=torch.float32)
pipe = pipeline(
'text2text-generation',
model=BASE_MODEL,
tokenizer=TOKENIZER,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95,
# device=torch.device('cpu')
)
llm = HuggingFacePipeline(pipeline=pipe)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = FAISS.load_local("faiss_index", embeddings)
# Build a QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectordb.as_retriever(),
)
return qa_chain
@st.cache_data
# function to display the PDF of a given file
def display_pdf(file):
try:
# Opening file from file path
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# Embedding PDF in HTML
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# Displaying File
st.markdown(pdf_display, unsafe_allow_html=True)
except Exception as e:
st.error(f"An error occurred while displaying the PDF: {e}")
# Display conversation history using Streamlit messages
def display_conversation(history):
for i in range(len(history["generated"])):
message(history["past"][i], is_user=True, key=f"{i}_user")
message(history["generated"][i], key=str(i))
def main():
# Add a sidebar for model selection
model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"]
selected_model = st.sidebar.selectbox("Select Model", model_options)
st.markdown("<h1 style='text-align: center; color: blue;'>Custom PDF Chatbot πŸ¦œπŸ“„ </h1>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center; color:red;'>Upload your PDF, and Ask Questions πŸ‘‡</h2>", unsafe_allow_html=True)
uploaded_file = st.file_uploader("", type=["pdf"])
if uploaded_file is not None:
file_details = {
"Filename": uploaded_file.name,
"File size": get_file_size(uploaded_file)
}
os.makedirs("docs", exist_ok=True)
filepath = os.path.join("docs", uploaded_file.name)
try:
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
col1, col2 = st.columns([1, 2])
with col1:
st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
st.json(file_details)
st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
pdf_view = display_pdf(filepath)
with col2:
st.success(f'model selected successfully: {selected_model}')
with st.spinner('Embeddings are in process...'):
ingested_data = data_ingestion()
st.success('Embeddings are created successfully!')
st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
user_input = st.text_input("", key="input")
# Initialize session state for generated responses and past messages
if "generated" not in st.session_state:
st.session_state["generated"] = ["I am ready to help you"]
if "past" not in st.session_state:
st.session_state["past"] = ["Hey there!"]
# Search the database for a response based on user input and update session state
if user_input:
answer = process_answer({'query': user_input}, initialize_qa_chain(selected_model))
st.session_state["past"].append(user_input)
response = answer
st.session_state["generated"].append(response)
# Display conversation history using Streamlit messages
if st.session_state["generated"]:
display_conversation(st.session_state)
except Exception as e:
st.error(f"An error occurred: {e}")
if __name__ == "__main__":
main()