Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import requests
|
5 |
+
import io
|
6 |
+
from transformers import pipeline
|
7 |
+
from PIL import Image
|
8 |
+
import requests
|
9 |
+
|
10 |
+
|
11 |
+
st.title('Playing cards Image Analysis')
|
12 |
+
|
13 |
+
'''
|
14 |
+
This next piece of code will hit GitHub for two csv files
|
15 |
+
One is the original dataset, broken up into test, train, valid.
|
16 |
+
The second csv is the test dataset, with the results after the models were run through the API
|
17 |
+
'''
|
18 |
+
|
19 |
+
|
20 |
+
# Downloading the csv file from your GitHub account
|
21 |
+
url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/cards.csv"
|
22 |
+
download = requests.get(url).content
|
23 |
+
|
24 |
+
# Reading the downloaded content and turning it into a pandas data frame
|
25 |
+
df = pd.read_csv(io.StringIO(download.decode('utf-8')))
|
26 |
+
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
|
27 |
+
df_fulldataset=df
|
28 |
+
|
29 |
+
# Downloading the csv file from your GitHub account
|
30 |
+
url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/ML_results.csv"
|
31 |
+
download = requests.get(url).content
|
32 |
+
|
33 |
+
# Reading the downloaded content and turning it into a pandas data frame
|
34 |
+
df = pd.read_csv(io.StringIO(download.decode('utf-8')))
|
35 |
+
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
|
36 |
+
df_test = df
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# Create the button
|
41 |
+
if st.button('Click me to re-run code',key='RunCode_button'):
|
42 |
+
# Call the function when the button is clicked
|
43 |
+
st.experimental_rerun()
|
44 |
+
|
45 |
+
st.header('Sample of the .csv data:')
|
46 |
+
x = st.slider('Select a value',value=10,max_value=8000)
|
47 |
+
st.table(df_fulldataset.sample(x))
|
48 |
+
|
49 |
+
### HORIZONTAL BAR ###
|
50 |
+
st.header('Distribution of the playing card images:')
|
51 |
+
|
52 |
+
# Get the value counts of the 'labels' column
|
53 |
+
value_counts = df_fulldataset.groupby('labels')['class index'].count().iloc[::-1]
|
54 |
+
|
55 |
+
fig, ax = plt.subplots(figsize=(10,10))
|
56 |
+
|
57 |
+
# Create a bar chart of the value counts
|
58 |
+
ax = value_counts.plot.barh()
|
59 |
+
# Set the chart title and axis labels
|
60 |
+
ax.set_title('Value Counts of Labels')
|
61 |
+
ax.set_xlabel('Label')
|
62 |
+
ax.set_ylabel('Count')
|
63 |
+
|
64 |
+
# Show the chart
|
65 |
+
st.pyplot(fig)
|
66 |
+
|
67 |
+
|
68 |
+
### PIE CHART ###
|
69 |
+
st.header('Balance of Train,Valid,Test datasets:')
|
70 |
+
|
71 |
+
# Get the value counts of the 'labels' column
|
72 |
+
value_counts =df_fulldataset['data set'].value_counts()
|
73 |
+
|
74 |
+
fig, ax = plt.subplots(figsize=(5,5)
|
75 |
+
)
|
76 |
+
# Create a bar chart of the value counts
|
77 |
+
ax = value_counts.plot.pie(autopct='%1.1f%%')
|
78 |
+
|
79 |
+
# Set the chart title and axis labels
|
80 |
+
# Show the chart
|
81 |
+
st.pyplot(fig)
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
models_run= ['SwinForImageClassification_24',
|
88 |
+
'ViTForImageClassification_22',
|
89 |
+
'SwinForImageClassification_21',
|
90 |
+
'ResNetForImageClassification_23',
|
91 |
+
'BeitForImageClassification_25']
|
92 |
+
|
93 |
+
pipeline_dict = dict(
|
94 |
+
SwinForImageClassification_21="rwcuffney/autotrain-pick_a_card-3726099221",
|
95 |
+
ViTForImageClassification_22="rwcuffney/autotrain-pick_a_card-3726099222",
|
96 |
+
ResNetForImageClassification_23= "rwcuffney/autotrain-pick_a_card-3726099223",
|
97 |
+
SwinForImageClassification_24 = "rwcuffney/autotrain-pick_a_card-3726099224",
|
98 |
+
BeitForImageClassification_25="rwcuffney/autotrain-pick_a_card-3726099225")
|
99 |
+
|
100 |
+
#### Try it out ###
|
101 |
+
|
102 |
+
st.header("Try it out")
|
103 |
+
|
104 |
+
'''
|
105 |
+
Warning: changing models takes a minute to download new model.
|
106 |
+
|
107 |
+
You can use any image... try test/queen of hearts/4.jpg to see an example that
|
108 |
+
Got different results with different models
|
109 |
+
'''
|
110 |
+
|
111 |
+
##### FORM #####
|
112 |
+
|
113 |
+
with st.form("api_form"):
|
114 |
+
model = st.selectbox('Which model do you want to try?',models_run,key='select_box')
|
115 |
+
uploaded_file = st.file_uploader("Choose a file")
|
116 |
+
if uploaded_file is not None:
|
117 |
+
# To read file as bytes:
|
118 |
+
st.image(uploaded_file)
|
119 |
+
image = Image.open(uploaded_file)
|
120 |
+
|
121 |
+
|
122 |
+
submitted = st.form_submit_button("Submit")
|
123 |
+
if submitted:
|
124 |
+
pipeline = pipeline(task="image-classification", model=pipeline_dict[model])
|
125 |
+
def predict(image):
|
126 |
+
predictions = pipeline(image)
|
127 |
+
return {p["label"]: p["score"] for p in predictions}
|
128 |
+
prediction = predict(image)
|
129 |
+
st.write(prediction)
|
130 |
+
|
131 |
+
#### FUNCTIONS ####
|
132 |
+
import sklearn
|
133 |
+
from sklearn import metrics
|
134 |
+
import matplotlib.pyplot as plt
|
135 |
+
|
136 |
+
index = ['accuracy_score','Weighted f1', 'Cohen Kappa','Matthews']
|
137 |
+
df_Metrics =pd.DataFrame(index=index)
|
138 |
+
|
139 |
+
labels = df_test['labels'].unique()
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
### FUNCTION TO SHOW THE METRICS
|
144 |
+
def show_metrics(test,pred,name):
|
145 |
+
from sklearn import metrics
|
146 |
+
|
147 |
+
my_Name = name
|
148 |
+
my_Accuracy_score=metrics.accuracy_score(test, pred)
|
149 |
+
#my_ROC_AUC_score= roc_auc_score(y, model.predict_proba(X), multi_class='ovr')
|
150 |
+
my_Weighted_f1= metrics.f1_score(test, pred,average='weighted')
|
151 |
+
my_Cohen_Kappa = metrics.cohen_kappa_score(test, pred)
|
152 |
+
my_Matthews_coefficient=metrics.matthews_corrcoef(test, pred)
|
153 |
+
|
154 |
+
st.header(f'Metrics for {my_Name}:')
|
155 |
+
report =metrics.classification_report(test, pred, output_dict=True)
|
156 |
+
df_report = pd.DataFrame(report).transpose()
|
157 |
+
st.dataframe(df_report )
|
158 |
+
st.write(f'Accuracy Score........{metrics.accuracy_score(test, pred):.4f}\n\n' \
|
159 |
+
#f'ROC AUC Score.........{my_ROC_AUC_score:.4f}\n\n' \
|
160 |
+
f'Weighted f1 score.....{my_Weighted_f1:.4f}\n\n' \
|
161 |
+
f'Cohen Kappa...........{my_Cohen_Kappa:.4f}\n\n' \
|
162 |
+
f'Matthews Coefficient..{my_Matthews_coefficient:.4f}\n\n')
|
163 |
+
my_List = [my_Accuracy_score, my_Weighted_f1, my_Cohen_Kappa, my_Matthews_coefficient]
|
164 |
+
|
165 |
+
df_Metrics[my_Name] = my_List
|
166 |
+
|
167 |
+
cfm= metrics.confusion_matrix(test, pred)
|
168 |
+
st.caption(f'Confusion Matrix: {my_Name}')
|
169 |
+
cmd = metrics.ConfusionMatrixDisplay(cfm,display_labels=labels)
|
170 |
+
fig, ax = plt.subplots(figsize=(15,15))
|
171 |
+
ax = cmd.plot(ax=ax,
|
172 |
+
colorbar=False,
|
173 |
+
values_format = '.0f',
|
174 |
+
cmap='Reds')#='tab20')# see color options here https://matplotlib.org/stable/tutorials/colors/colormaps.html
|
175 |
+
plt.xticks(rotation=90)
|
176 |
+
st.pyplot(fig)
|
177 |
+
|
178 |
+
|
179 |
+
st.header('Let\'s see how the models performed')
|
180 |
+
|
181 |
+
'''
|
182 |
+
The next part of the code will analyze the full dataset.
|
183 |
+
Choose all five models to compare them all
|
184 |
+
|
185 |
+
'''
|
186 |
+
|
187 |
+
|
188 |
+
##### FORM #####
|
189 |
+
|
190 |
+
with st.form("my_form"):
|
191 |
+
st.write("You can choose from 1 to 5 models")
|
192 |
+
|
193 |
+
|
194 |
+
selected_options = st.multiselect(
|
195 |
+
'Which models would you like to analyze?', models_run)
|
196 |
+
|
197 |
+
submitted = st.form_submit_button("Submit")
|
198 |
+
if submitted:
|
199 |
+
st.write('you selected',selected_options)
|
200 |
+
|
201 |
+
|
202 |
+
###Show the metrics for each dataset:
|
203 |
+
test = df_test['labels']
|
204 |
+
|
205 |
+
#for m in models_run:
|
206 |
+
for m in selected_options:
|
207 |
+
pred = df_test[m]
|
208 |
+
show_metrics(test,pred,m)
|
209 |
+
|
210 |
+
st.header('Metrics for all models:')
|
211 |
+
st.table(df_Metrics)
|
212 |
+
|
213 |
+
#### GRAPH THE RESULTS ###
|
214 |
+
import seaborn as sns
|
215 |
+
|
216 |
+
# Reshape the dataframe into long format using pd.melt()
|
217 |
+
#subset_df = pd.melt(df_Metrics[['SwinForImageClassification_24',
|
218 |
+
#'ViTForImageClassification_22', 'SwinForImageClassification_21', 'ResNetForImageClassification_23', 'BeitForImageClassification_25']].reset_index(), id_vars='index', var_name='Model', value_name='Score')
|
219 |
+
subset_df = pd.melt(df_Metrics[selected_options].reset_index(), id_vars='index', var_name='Model', value_name='Score')
|
220 |
+
|
221 |
+
sns.set_style('whitegrid')
|
222 |
+
ax=sns.catplot(data=subset_df,
|
223 |
+
x='index',
|
224 |
+
y='Score',
|
225 |
+
hue='Model',
|
226 |
+
kind='bar',
|
227 |
+
palette='Blues',
|
228 |
+
aspect=2)
|
229 |
+
|
230 |
+
plt.xlabel('Clusters')
|
231 |
+
plt.ylabel('Scores')
|
232 |
+
|
233 |
+
fig = ax.figure
|
234 |
+
st.pyplot(fig)
|