|
import streamlit as st |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
|
|
from datasets import load_dataset |
|
dataset = load_dataset("rwcuffney/pick_a_card_test") |
|
|
|
|
|
|
|
|
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification |
|
''' |
|
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099221") |
|
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099221") |
|
st.write(model.__class__.__name__) |
|
st.code(type(model)) |
|
|
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099222") |
|
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099222") |
|
st.write(model.__class__.__name__) |
|
st.code(type(model)) |
|
|
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099223") |
|
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099223") |
|
st.write(model.__class__.__name__) |
|
st.code(type(model)) |
|
|
|
''' |
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224") |
|
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224") |
|
st.write(model.__class__.__name__) |
|
st.code(type(model)) |
|
|
|
from transformers import AutoImageProcessor |
|
import torch |
|
|
|
|
|
image = dataset["test"][0] |
|
st.image(image) |
|
|
|
image_processor = AutoImageProcessor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224") |
|
inputs = image_processor(image, return_tensors="pt") |
|
|
|
|
|
''' |
|
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099225") |
|
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099225") |
|
st.write(model.__class__.__name__) |
|
st.code(type(model)) |
|
''' |
|
|
|
|
|
''' |
|
x = st.slider('Select a value') |
|
st.write(x, 'squared is', x * x) |
|
|
|
import pandas as pd |
|
#df = pd.read_csv('https://rwcuffney/autotrain-data-pick_a_card/cards.csv').sort_values('class index') |
|
#st.dataframe(df.head(3)) |
|
# from datasets import load_dataset |
|
|
|
dataset = load_dataset("https://rwcuffney/autotrain-data-pick_a_card") |
|
# st.write(type(dataset)) |
|
# st.write('Hello World') |
|
|
|
from datasets import load_dataset |
|
#dataset = load_dataset("rwcuffney/autotrain-data-pick_a_card") |
|
#st.write(dataset) |
|
|
|
import pandas as pd |
|
import requests |
|
import io |
|
|
|
# Downloading the csv file from your GitHub account |
|
url = "https://huggingface.co./datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/cards.csv" # Make sure the url is the raw version of the file on GitHub |
|
download = requests.get(url).content |
|
|
|
|
|
# Reading the downloaded content and turning it into a pandas dataframe |
|
df = pd.read_csv(io.StringIO(download.decode('utf-8'))) |
|
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index') |
|
df_test = df[df['data set']=='test'] |
|
df_train = df[df['data set']=='train'] |
|
df_validate = df[df['data set']=='validate'] |
|
|
|
from datasets import load_dataset #this isn't working |
|
dataset = load_dataset("rwcuffney/pick_a_card_test") #rwcuffney/pick_a_card_test |
|
|
|
st.write(df.head(20)) |
|
### |
|
''' |