ruslanmv commited on
Commit
5c6f84b
·
verified ·
1 Parent(s): 72be7ba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +172 -2
app.py CHANGED
@@ -6,6 +6,176 @@ import torch
6
  from diffusers import DiffusionPipeline, FluxPipeline, AutoencoderTiny, AutoencoderKL
7
  from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  # Define models and their configurations
11
  models = {
@@ -183,8 +353,8 @@ Select a model to generate images using the FLUX pipeline.
183
 
184
  demo.launch()
185
 
186
-
187
-
188
 
189
  '''
190
  import gradio as gr
 
6
  from diffusers import DiffusionPipeline, FluxPipeline, AutoencoderTiny, AutoencoderKL
7
  from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
+ from download import download_all_models, models, download_vaes
10
+
11
+ # Call the download function at the start of the app
12
+ download_all_models()
13
+ download_vaes()
14
+
15
+ dtype = torch.bfloat16
16
+ device = "cuda" if torch.cuda.is_available() else "cpu"
17
+
18
+ # Load VAEs - these can be reused across models
19
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
20
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
21
+
22
+ def load_model(model_name):
23
+ model_info = models[model_name]
24
+ pipeline_class = model_info["pipeline_class"]
25
+ model_id = model_info["model_id"]
26
+ config = model_info["config"]
27
+
28
+ pipeline = pipeline_class.from_pretrained(model_id, **config, vae=taef1).to(device)
29
+
30
+ # Assign the custom function for live preview if it's a FluxPipeline or DiffusionPipeline
31
+ if pipeline_class in (FluxPipeline, DiffusionPipeline):
32
+ pipeline.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipeline)
33
+
34
+ return pipeline, model_info.get("description", "No description available.")
35
+
36
+ # Initialize with default model
37
+ current_model_name = "FLUX.1-dev"
38
+ pipe, model_description = load_model(current_model_name)
39
+ torch.cuda.empty_cache()
40
+
41
+ MAX_SEED = np.iinfo(np.int32).max
42
+ MAX_IMAGE_SIZE = 2048
43
+
44
+ @spaces.GPU(duration=75)
45
+ def infer(model_name, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
46
+ global pipe, current_model_name # Access the global pipe and model name
47
+
48
+ if randomize_seed:
49
+ seed = random.randint(0, MAX_SEED)
50
+ generator = torch.Generator().manual_seed(seed)
51
+
52
+ # Only reload the model if a different one is selected
53
+ if model_name != current_model_name:
54
+ pipe, _ = load_model(model_name)
55
+ current_model_name = model_name
56
+
57
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
58
+ prompt=prompt,
59
+ guidance_scale=guidance_scale,
60
+ num_inference_steps=num_inference_steps,
61
+ width=width,
62
+ height=height,
63
+ generator=generator,
64
+ output_type="pil",
65
+ good_vae=good_vae,
66
+ ):
67
+ yield img, seed
68
+
69
+ examples = [
70
+ ["FLUX.1-dev", "a tiny astronaut hatching from an egg on the moon"],
71
+ ["FLUX.1-schnell", "a cat holding a sign that says hello world"],
72
+ ["Flux.1-lite-8B-alpha", "an anime illustration of a wiener schnitzel"],
73
+ ]
74
+
75
+ css="""
76
+ #col-container {
77
+ margin: 0 auto;
78
+ max-width: 520px;
79
+ }
80
+ """
81
+
82
+ with gr.Blocks(css=css) as demo:
83
+ with gr.Column(elem_id="col-container"):
84
+ gr.Markdown(f"""# FLUX.1 Model Selector
85
+ Select a model to generate images using the FLUX pipeline.
86
+ """)
87
+ model_selector = gr.Dropdown(
88
+ choices=list(models.keys()),
89
+ value=current_model_name,
90
+ label="Select Model",
91
+ )
92
+ model_description_box = gr.Markdown(model_description)
93
+ with gr.Row():
94
+ prompt = gr.Text(
95
+ label="Prompt",
96
+ show_label=False,
97
+ max_lines=1,
98
+ placeholder="Enter your prompt",
99
+ container=False,
100
+ )
101
+ run_button = gr.Button("Run", scale=0)
102
+ result = gr.Image(label="Result", show_label=False)
103
+ with gr.Accordion("Advanced Settings", open=False):
104
+ seed = gr.Slider(
105
+ label="Seed",
106
+ minimum=0,
107
+ maximum=MAX_SEED,
108
+ step=1,
109
+ value=0,
110
+ )
111
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
112
+ with gr.Row():
113
+ width = gr.Slider(
114
+ label="Width",
115
+ minimum=256,
116
+ maximum=MAX_IMAGE_SIZE,
117
+ step=32,
118
+ value=1024,
119
+ )
120
+ height = gr.Slider(
121
+ label="Height",
122
+ minimum=256,
123
+ maximum=MAX_IMAGE_SIZE,
124
+ step=32,
125
+ value=1024,
126
+ )
127
+ with gr.Row():
128
+ guidance_scale = gr.Slider(
129
+ label="Guidance Scale",
130
+ minimum=1,
131
+ maximum=15,
132
+ step=0.1,
133
+ value=3.5,
134
+ )
135
+ num_inference_steps = gr.Slider(
136
+ label="Number of inference steps",
137
+ minimum=1,
138
+ maximum=50,
139
+ step=1,
140
+ value=28,
141
+ )
142
+
143
+ def update_description(selected_model):
144
+ return models[selected_model]["description"]
145
+
146
+ model_selector.change(
147
+ fn=update_description,
148
+ inputs=[model_selector],
149
+ outputs=[model_description_box],
150
+ )
151
+
152
+ gr.Examples(
153
+ examples=examples,
154
+ fn=infer,
155
+ inputs=[model_selector, prompt], # Correct order of inputs
156
+ outputs=[result, seed],
157
+ cache_examples=False,
158
+ )
159
+
160
+ gr.on(
161
+ triggers=[run_button.click, prompt.submit],
162
+ fn=infer,
163
+ inputs=[model_selector, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
164
+ outputs=[result, seed],
165
+ )
166
+
167
+ demo.launch()
168
+
169
+ #working1
170
+ ''''
171
+ import gradio as gr
172
+ import numpy as np
173
+ import random
174
+ import spaces
175
+ import torch
176
+ from diffusers import DiffusionPipeline, FluxPipeline, AutoencoderTiny, AutoencoderKL
177
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
178
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
179
 
180
  # Define models and their configurations
181
  models = {
 
353
 
354
  demo.launch()
355
 
356
+ '''
357
+ #orginal
358
 
359
  '''
360
  import gradio as gr