File size: 6,728 Bytes
8b60c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72be7ba
 
 
ff5d480
72be7ba
 
 
 
 
 
 
 
 
 
 
 
 
 
5f435f3
72be7ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b60c80
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from diffusers import DiffusionPipeline, AutoencoderTiny
import torch

# Define models and their configurations
models = {
    "FLUX.1-dev": {
        "pipeline_class": DiffusionPipeline,
        "model_id": "black-forest-labs/FLUX.1-dev",
        "config": {"torch_dtype": torch.bfloat16},
        "description": "**FLUX.1-dev** is a development model that focuses on delivering highly detailed and artistically rich images.",
    },
}

# Helper function to get the Hugging Face token securely
def get_hf_token():
    try:
        from google.colab import userdata  # Try to get token from Colab secrets
        hf_token = userdata.get('HF_TOKEN')
        if hf_token:
            return hf_token
        else:
            raise RuntimeError("HF_TOKEN not found in Colab secrets.")
    except ImportError:  # Not running in Colab
        return os.getenv("HF_TOKEN", None)

# Function to pre-download models
def download_all_models():
    print("Downloading all models...")
    _HF_TOKEN = get_hf_token()
    if not _HF_TOKEN:
        raise ValueError("HF_TOKEN is not available. Please set it in Colab secrets or environment variables.")
    for model_key, config in models.items():
        try:
            pipeline_class = config["pipeline_class"]
            model_id = config["model_id"]
            # Download the pipeline (weights will be cached)
            pipeline_class.from_pretrained(model_id, token=_HF_TOKEN, **config.get("config", {}))
            print(f"Model '{model_key}' downloaded successfully.")
        except Exception as e:
            print(f"Error downloading model '{model_key}': {e}")
    print("Model download process complete.")

    # Download the only VAE needed
    print("Downloading VAE...")
    try:
        AutoencoderTiny.from_pretrained("madebyollin/taef1", token=_HF_TOKEN)
        print("VAE 'taef1' downloaded successfully.")
    except Exception as e:
        print(f"Error downloading VAE: {e}")
    print("VAE download process complete.")

'''

import os
from diffusers import DiffusionPipeline, AutoencoderTiny
import torch

# Define models and their configurations
models = {
    "FLUX.1-dev": {
        "pipeline_class": DiffusionPipeline,
        "model_id": "black-forest-labs/FLUX.1-dev",
        "config": {"torch_dtype": torch.bfloat16},
        "description": "**FLUX.1-dev** is a development model that focuses on delivering highly detailed and artistically rich images.",
    },
}

# Helper function to get the Hugging Face token securely
def get_hf_token():
    try:
        from google.colab import userdata  # Try to get token from Colab secrets
        hf_token = userdata.get('HF_TOKEN')
        if hf_token:
            return hf_token
        else:
            raise RuntimeError("HF_TOKEN not found in Colab secrets.")
    except ImportError:  # Not running in Colab
        return os.getenv("HF_TOKEN", None)

# Function to pre-download models
def download_all_models():
    print("Downloading all models...")
    _HF_TOKEN = get_hf_token()
    if not _HF_TOKEN:
        raise ValueError("HF_TOKEN is not available. Please set it in Colab secrets or environment variables.")
    for model_key, config in models.items():
        try:
            pipeline_class = config["pipeline_class"]
            model_id = config["model_id"]
            # Download the pipeline (weights will be cached)
            pipeline_class.from_pretrained(model_id, token=_HF_TOKEN, **config.get("config", {}))
            print(f"Model '{model_key}' downloaded successfully.")
        except Exception as e:
            print(f"Error downloading model '{model_key}': {e}")
    print("Model download process complete.")

    # Download the only VAE needed
    print("Downloading VAE...")
    try:
        AutoencoderTiny.from_pretrained("madebyollin/taef1", token=_HF_TOKEN)
        print("VAE 'taef1' downloaded successfully.")
    except Exception as e:
        print(f"Error downloading VAE: {e}")
    print("VAE download process complete.")

import os
from diffusers import DiffusionPipeline, FluxPipeline, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
import torch
# Define models and their configurations (same as in app.py)
models = {
    "FLUX.1-schnell": {
        "pipeline_class": FluxPipeline,
        "model_id": "black-forest-labs/FLUX.1-schnell",
        "config": {"torch_dtype": torch.bfloat16},
        "description": "**FLUX.1-schnell** is a fast and efficient model designed for quick image generation.",
    },
    "FLUX.1-dev": {
        "pipeline_class": DiffusionPipeline,
        "model_id": "black-forest-labs/FLUX.1-dev",
        "config": {"torch_dtype": torch.bfloat16},
        "description": "**FLUX.1-dev** is a development model that focuses on delivering highly detailed and artistically rich images.",
    },
    
}

# Helper function to get the Hugging Face token securely
def get_hf_token():
    try:
        from google.colab import userdata  # Try to get token from Colab secrets
        hf_token = userdata.get('HF_TOKEN')
        if hf_token:
            return hf_token
        else:
            raise RuntimeError("HF_TOKEN not found in Colab secrets.")
    except ImportError:  # Not running in Colab
        return os.getenv("HF_TOKEN", None)

# Function to pre-download models
def download_all_models():
    print("Downloading all models...")
    _HF_TOKEN = get_hf_token()  # Get the token once

    if not _HF_TOKEN:
        raise ValueError("HF_TOKEN is not available. Please set it in Colab secrets or environment variables.")

    for model_key, config in models.items():
        try:
            pipeline_class = config["pipeline_class"]
            model_id = config["model_id"]

            # Download the pipeline (weights will be cached)
            pipeline_class.from_pretrained(model_id, token=_HF_TOKEN, **config.get("config", {}))
            print(f"Model '{model_key}' downloaded successfully.")

        except Exception as e:
            print(f"Error downloading model '{model_key}': {e}")

    print("Model download process complete.")

def download_vaes():
    print("Downloading VAEs...")
    try:
        # Download taef1
        AutoencoderTiny.from_pretrained("madebyollin/taef1", use_auth_token=get_hf_token())
        print("VAE 'taef1' downloaded successfully.")

        # Download good_vae (AutoencoderKL from FLUX.1-dev)
        AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", use_auth_token=get_hf_token())
        print("VAE 'good_vae' downloaded successfully.")

    except Exception as e:
        print(f"Error downloading VAEs: {e}")

    print("VAE download process complete.")

    '''