Spaces:
Running
Running
import time | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import optim | |
from torch.utils.data import DataLoader | |
import vocoder.hparams as hp | |
from vocoder.display import stream, simple_table | |
from vocoder.distribution import discretized_mix_logistic_loss | |
from vocoder.gen_wavernn import gen_testset | |
from vocoder.models.fatchord_version import WaveRNN | |
from vocoder.vocoder_dataset import VocoderDataset, collate_vocoder | |
def train(run_id: str, syn_dir: Path, voc_dir: Path, models_dir: Path, ground_truth: bool, save_every: int, | |
backup_every: int, force_restart: bool): | |
# Check to make sure the hop length is correctly factorised | |
assert np.cumprod(hp.voc_upsample_factors)[-1] == hp.hop_length | |
# Instantiate the model | |
print("Initializing the model...") | |
model = WaveRNN( | |
rnn_dims=hp.voc_rnn_dims, | |
fc_dims=hp.voc_fc_dims, | |
bits=hp.bits, | |
pad=hp.voc_pad, | |
upsample_factors=hp.voc_upsample_factors, | |
feat_dims=hp.num_mels, | |
compute_dims=hp.voc_compute_dims, | |
res_out_dims=hp.voc_res_out_dims, | |
res_blocks=hp.voc_res_blocks, | |
hop_length=hp.hop_length, | |
sample_rate=hp.sample_rate, | |
mode=hp.voc_mode | |
) | |
if torch.cuda.is_available(): | |
model = model.cuda() | |
# Initialize the optimizer | |
optimizer = optim.Adam(model.parameters()) | |
for p in optimizer.param_groups: | |
p["lr"] = hp.voc_lr | |
loss_func = F.cross_entropy if model.mode == "RAW" else discretized_mix_logistic_loss | |
# Load the weights | |
model_dir = models_dir / run_id | |
model_dir.mkdir(exist_ok=True) | |
weights_fpath = model_dir / "vocoder.pt" | |
if force_restart or not weights_fpath.exists(): | |
print("\nStarting the training of WaveRNN from scratch\n") | |
model.save(weights_fpath, optimizer) | |
else: | |
print("\nLoading weights at %s" % weights_fpath) | |
model.load(weights_fpath, optimizer) | |
print("WaveRNN weights loaded from step %d" % model.step) | |
# Initialize the dataset | |
metadata_fpath = syn_dir.joinpath("train.txt") if ground_truth else \ | |
voc_dir.joinpath("synthesized.txt") | |
mel_dir = syn_dir.joinpath("mels") if ground_truth else voc_dir.joinpath("mels_gta") | |
wav_dir = syn_dir.joinpath("audio") | |
dataset = VocoderDataset(metadata_fpath, mel_dir, wav_dir) | |
test_loader = DataLoader(dataset, batch_size=1, shuffle=True) | |
# Begin the training | |
simple_table([('Batch size', hp.voc_batch_size), | |
('LR', hp.voc_lr), | |
('Sequence Len', hp.voc_seq_len)]) | |
for epoch in range(1, 350): | |
data_loader = DataLoader(dataset, hp.voc_batch_size, shuffle=True, num_workers=2, collate_fn=collate_vocoder) | |
start = time.time() | |
running_loss = 0. | |
for i, (x, y, m) in enumerate(data_loader, 1): | |
if torch.cuda.is_available(): | |
x, m, y = x.cuda(), m.cuda(), y.cuda() | |
# Forward pass | |
y_hat = model(x, m) | |
if model.mode == 'RAW': | |
y_hat = y_hat.transpose(1, 2).unsqueeze(-1) | |
elif model.mode == 'MOL': | |
y = y.float() | |
y = y.unsqueeze(-1) | |
# Backward pass | |
loss = loss_func(y_hat, y) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
speed = i / (time.time() - start) | |
avg_loss = running_loss / i | |
step = model.get_step() | |
k = step // 1000 | |
if backup_every != 0 and step % backup_every == 0 : | |
model.checkpoint(model_dir, optimizer) | |
if save_every != 0 and step % save_every == 0 : | |
model.save(weights_fpath, optimizer) | |
msg = f"| Epoch: {epoch} ({i}/{len(data_loader)}) | " \ | |
f"Loss: {avg_loss:.4f} | {speed:.1f} " \ | |
f"steps/s | Step: {k}k | " | |
stream(msg) | |
gen_testset(model, test_loader, hp.voc_gen_at_checkpoint, hp.voc_gen_batched, | |
hp.voc_target, hp.voc_overlap, model_dir) | |
print("") | |