Spaces:
Running
Running
import gradio as gr | |
import os | |
from utils.default_models import ensure_default_models | |
import sys | |
import traceback | |
from pathlib import Path | |
from time import perf_counter as timer | |
import numpy as np | |
import torch | |
from encoder import inference as encoder | |
from synthesizer.inference import Synthesizer | |
#from toolbox.utterance import Utterance | |
from vocoder import inference as vocoder | |
import time | |
import librosa | |
import numpy as np | |
#import sounddevice as sd | |
import soundfile as sf | |
import argparse | |
from utils.argutils import print_args | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
) | |
parser.add_argument("-e", "--enc_model_fpath", type=Path, | |
default="saved_models/default/encoder.pt", | |
help="Path to a saved encoder") | |
parser.add_argument("-s", "--syn_model_fpath", type=Path, | |
default="saved_models/default/synthesizer.pt", | |
help="Path to a saved synthesizer") | |
parser.add_argument("-v", "--voc_model_fpath", type=Path, | |
default="saved_models/default/vocoder.pt", | |
help="Path to a saved vocoder") | |
parser.add_argument("--cpu", action="store_true", help=\ | |
"If True, processing is done on CPU, even when a GPU is available.") | |
parser.add_argument("--no_sound", action="store_true", help=\ | |
"If True, audio won't be played.") | |
parser.add_argument("--seed", type=int, default=None, help=\ | |
"Optional random number seed value to make toolbox deterministic.") | |
args = parser.parse_args() | |
arg_dict = vars(args) | |
print_args(args, parser) | |
# Maximum of generated wavs to keep on memory | |
MAX_WAVS = 15 | |
utterances = set() | |
current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav | |
synthesizer = None # type: Synthesizer | |
current_wav = None | |
waves_list = [] | |
waves_count = 0 | |
waves_namelist = [] | |
# Hide GPUs from Pytorch to force CPU processing | |
if arg_dict.pop("cpu"): | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
print("Running a test of your configuration...\n") | |
if torch.cuda.is_available(): | |
device_id = torch.cuda.current_device() | |
gpu_properties = torch.cuda.get_device_properties(device_id) | |
## Print some environment information (for debugging purposes) | |
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with " | |
"%.1fGb total memory.\n" % | |
(torch.cuda.device_count(), | |
device_id, | |
gpu_properties.name, | |
gpu_properties.major, | |
gpu_properties.minor, | |
gpu_properties.total_memory / 1e9)) | |
else: | |
print("Using CPU for inference.\n") | |
## Load the models one by one. | |
print("Preparing the encoder, the synthesizer and the vocoder...") | |
ensure_default_models(Path("saved_models")) | |
#encoder.load_model(args.enc_model_fpath) | |
#synthesizer = Synthesizer(args.syn_model_fpath) | |
#vocoder.load_model(args.voc_model_fpath) | |
def compute_embedding(in_fpath): | |
if not encoder.is_loaded(): | |
model_fpath = args.enc_model_fpath | |
print("Loading the encoder %s... " % model_fpath) | |
start = time.time() | |
encoder.load_model(model_fpath) | |
print("Done (%dms)." % int(1000 * (time.time() - start)), "append") | |
## Computing the embedding | |
# First, we load the wav using the function that the speaker encoder provides. This is | |
# Get the wav from the disk. We take the wav with the vocoder/synthesizer format for | |
# playback, so as to have a fair comparison with the generated audio | |
print("Step 1- load_preprocess_wav",in_fpath) | |
wav = Synthesizer.load_preprocess_wav(in_fpath) | |
# important: there is preprocessing that must be applied. | |
# The following two methods are equivalent: | |
# - Directly load from the filepath: | |
print("Step 2- preprocess_wav") | |
preprocessed_wav = encoder.preprocess_wav(wav) | |
# - If the wav is already loaded: | |
#original_wav, sampling_rate = librosa.load(str(in_fpath)) | |
#preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate) | |
# Compute the embedding | |
print("Step 3- embed_utterance") | |
embed, partial_embeds, _ = encoder.embed_utterance(preprocessed_wav, return_partials=True) | |
print("Loaded file succesfully") | |
# Then we derive the embedding. There are many functions and parameters that the | |
# speaker encoder interfaces. These are mostly for in-depth research. You will typically | |
# only use this function (with its default parameters): | |
#embed = encoder.embed_utterance(preprocessed_wav) | |
return embed | |
def create_spectrogram(text,embed): | |
# If seed is specified, reset torch seed and force synthesizer reload | |
if args.seed is not None: | |
torch.manual_seed(args.seed) | |
synthesizer = Synthesizer(args.syn_model_fpath) | |
# Synthesize the spectrogram | |
model_fpath = args.syn_model_fpath | |
print("Loading the synthesizer %s... " % model_fpath) | |
start = time.time() | |
synthesizer = Synthesizer(model_fpath) | |
print("Done (%dms)." % int(1000 * (time.time()- start)), "append") | |
# The synthesizer works in batch, so you need to put your data in a list or numpy array | |
texts = [text] | |
embeds = [embed] | |
# If you know what the attention layer alignments are, you can retrieve them here by | |
# passing return_alignments=True | |
specs = synthesizer.synthesize_spectrograms(texts, embeds) | |
breaks = [spec.shape[1] for spec in specs] | |
spec = np.concatenate(specs, axis=1) | |
sample_rate=synthesizer.sample_rate | |
return spec, breaks , sample_rate | |
def generate_waveform(current_generated): | |
speaker_name, spec, breaks = current_generated | |
assert spec is not None | |
## Generating the waveform | |
print("Synthesizing the waveform:") | |
# If seed is specified, reset torch seed and reload vocoder | |
if args.seed is not None: | |
torch.manual_seed(args.seed) | |
vocoder.load_model(args.voc_model_fpath) | |
model_fpath = args.voc_model_fpath | |
# Synthesize the waveform | |
if not vocoder.is_loaded(): | |
print("Loading the vocoder %s... " % model_fpath) | |
start = time.time() | |
vocoder.load_model(model_fpath) | |
print("Done (%dms)." % int(1000 * (time.time()- start)), "append") | |
current_vocoder_fpath= model_fpath | |
def vocoder_progress(i, seq_len, b_size, gen_rate): | |
real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000 | |
line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \ | |
% (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor) | |
print(line, "overwrite") | |
# Synthesizing the waveform is fairly straightforward. Remember that the longer the | |
# spectrogram, the more time-efficient the vocoder. | |
if current_vocoder_fpath is not None: | |
print("") | |
generated_wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress) | |
else: | |
print("Waveform generation with Griffin-Lim... ") | |
generated_wav = Synthesizer.griffin_lim(spec) | |
print(" Done!", "append") | |
## Post-generation | |
# There's a bug with sounddevice that makes the audio cut one second earlier, so we | |
# pad it. | |
generated_wav = np.pad(generated_wav, (0, Synthesizer.sample_rate), mode="constant") | |
# Add breaks | |
b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size) | |
b_starts = np.concatenate(([0], b_ends[:-1])) | |
wavs = [generated_wav[start:end] for start, end, in zip(b_starts, b_ends)] | |
breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks) | |
generated_wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)]) | |
# Trim excess silences to compensate for gaps in spectrograms (issue #53) | |
generated_wav = encoder.preprocess_wav(generated_wav) | |
return generated_wav | |
def save_on_disk(generated_wav,sample_rate): | |
# Save it on the disk | |
filename = "cloned_voice.wav" | |
print(generated_wav.dtype) | |
#OUT=os.environ['OUT_PATH'] | |
# Returns `None` if key doesn't exist | |
#OUT=os.environ.get('OUT_PATH') | |
#result = os.path.join(OUT, filename) | |
result = filename | |
print(" > Saving output to {}".format(result)) | |
sf.write(result, generated_wav.astype(np.float32), sample_rate) | |
print("\nSaved output as %s\n\n" % result) | |
return result | |
def play_audio(generated_wav,sample_rate): | |
# Play the audio (non-blocking) | |
if not args.no_sound: | |
try: | |
sd.stop() | |
sd.play(generated_wav, sample_rate) | |
except sd.PortAudioError as e: | |
print("\nCaught exception: %s" % repr(e)) | |
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n") | |
except: | |
raise | |
def clean_memory(): | |
import gc | |
#import GPUtil | |
# To see memory usage | |
print('Before clean ') | |
#GPUtil.showUtilization() | |
#cleaning memory 1 | |
gc.collect() | |
torch.cuda.empty_cache() | |
time.sleep(2) | |
print('After Clean GPU') | |
#GPUtil.showUtilization() | |
def clone_voice(in_fpath, text): | |
try: | |
speaker_name = "output" | |
# Compute embedding | |
embed=compute_embedding(in_fpath) | |
print("Created the embedding") | |
# Generating the spectrogram | |
spec, breaks, sample_rate = create_spectrogram(text,embed) | |
current_generated = (speaker_name, spec, breaks) | |
print("Created the mel spectrogram") | |
# Create waveform | |
generated_wav=generate_waveform(current_generated) | |
print("Created the the waveform ") | |
# Save it on the disk | |
save_on_disk(generated_wav,sample_rate) | |
#Play the audio | |
#play_audio(generated_wav,sample_rate) | |
return | |
except Exception as e: | |
print("Caught exception: %s" % repr(e)) | |
print("Restarting\n") | |
# Set environment variables | |
home_dir = os.getcwd() | |
OUT_PATH=os.path.join(home_dir, "out/") | |
os.environ['OUT_PATH'] = OUT_PATH | |
# create output path | |
os.makedirs(OUT_PATH, exist_ok=True) | |
USE_CUDA = torch.cuda.is_available() | |
os.system('pip install -q pydub ffmpeg-normalize') | |
CONFIG_SE_PATH = "config_se.json" | |
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar" | |
def greet(Text,Voicetoclone ,input_mic=None): | |
text= "%s" % (Text) | |
#reference_files= "%s" % (Voicetoclone) | |
clean_memory() | |
print(text,len(text),type(text)) | |
print(Voicetoclone,type(Voicetoclone)) | |
if len(text) == 0 : | |
print("Please add text to the program") | |
Text="Please add text to the program, thank you." | |
is_no_text=True | |
else: | |
is_no_text=False | |
if Voicetoclone==None and input_mic==None: | |
print("There is no input audio") | |
Text="Please add audio input, to the program, thank you." | |
Voicetoclone='trump.mp3' | |
if is_no_text: | |
Text="Please add text and audio, to the program, thank you." | |
if input_mic != "" and input_mic != None : | |
# Get the wav file from the microphone | |
print('The value of MIC IS :',input_mic,type(input_mic)) | |
Voicetoclone= input_mic | |
text= "%s" % (Text) | |
reference_files= Voicetoclone | |
print("path url") | |
print(Voicetoclone) | |
sample= str(Voicetoclone) | |
os.environ['sample'] = sample | |
size= len(reference_files)*sys.getsizeof(reference_files) | |
size2= size / 1000000 | |
if (size2 > 0.012) or len(text)>2000: | |
message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes." | |
print(message) | |
raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.") | |
else: | |
env_var = 'sample' | |
if env_var in os.environ: | |
print(f'{env_var} value is {os.environ[env_var]}') | |
else: | |
print(f'{env_var} does not exist') | |
#os.system(f'ffmpeg-normalize {os.environ[env_var]} -nt rms -t=-27 -o {os.environ[env_var]} -ar 16000 -f') | |
in_fpath = Path(Voicetoclone) | |
#in_fpath= in_fpath.replace("\"", "").replace("\'", "") | |
out_path=clone_voice(in_fpath, text) | |
print(" > text: {}".format(text)) | |
print("Generated Audio") | |
return "cloned_voice.wav" | |
demo = gr.Interface( | |
fn=greet, | |
inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'), | |
gr.Audio( | |
type="filepath", | |
source="upload", | |
label='Please upload a voice to clone (max. 30mb)'), | |
gr.inputs.Audio( | |
source="microphone", | |
label='or record', | |
type="filepath", | |
optional=True) | |
], | |
outputs="audio", | |
title = 'Clone Your Voice', | |
description = 'A simple application that Clone Your Voice. Wait one minute to process.', | |
article = | |
'''<div> | |
<p style="text-align: center"> All you need to do is record your voice, type what you want be say | |
,then wait for compiling. After that click on Play/Pause for listen the audio. The audio is saved in an wav format. | |
For more information visit <a href="https://ruslanmv.com/">ruslanmv.com</a> | |
</p> | |
</div>''', | |
#examples = [["I am the cloned version of Donald Trump. Well. I think what's happening to this country is unbelievably bad. We're no longer a respected country","trump.mp3","trump.mp3"], | |
# ["I am the cloned version of Elon Musk. Persistence is very important. You should not give up unless you are forced to give up.","musk.mp3","musk.mp3"] , | |
# ["I am the cloned version of Elizabeth. It has always been easy to hate and destroy. To build and to cherish is much more difficult." ,"queen.mp3","queen.mp3"] | |
# ] | |
) | |
demo.launch() |