Spaces:
Sleeping
Sleeping
Adding initial files
Browse files- Dockerfile +8 -0
- README.md +6 -2
- config.yaml +2 -0
- workflow/BackgroundRemoval.json +1 -0
- workflow/custom_nodes/model.py +24 -0
- workflow/custom_nodes/rmbg.py +111 -0
Dockerfile
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM rsamf/graphbook:10.0.0
|
2 |
+
|
3 |
+
RUN pip install graphbook_huggingface
|
4 |
+
|
5 |
+
COPY config.yaml .
|
6 |
+
COPY workflow workflow
|
7 |
+
|
8 |
+
CMD ["python", "-m", "graphbook.main", "--web_dir", "web/dist", "--isolate_users", "--no_sample"]
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🏢
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
@@ -7,6 +7,10 @@ sdk: docker
|
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
short_description: An ML app to remove the background from image datasets
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: RMBG Graphbook
|
3 |
emoji: 🏢
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
|
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
short_description: An ML app to remove the background from image datasets
|
10 |
+
app_port: 8005
|
11 |
+
thumbnail: https://cdn.prod.website-files.com/6620137e5938f28a7e4eef8a/662013b554ec4c6bf1306445_Graphbook_Logo_Final_Borderless-512.png
|
12 |
---
|
13 |
|
14 |
+
This is a Graphbook app that allows users to remove the background from any image dataset from Hugging Face. You may swap different datasets using the Hugging Face extension.
|
15 |
+
|
16 |
+
Check out our documentation at https://docs.graphbook.ai/.
|
config.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
plugins:
|
2 |
+
- "graphbook_huggingface"
|
workflow/BackgroundRemoval.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"version": "0", "type": "workflow", "nodes": [{"id": "0", "type": "step", "position": {"x": 253.6139923086571, "y": 59.52037501520965}, "data": {"name": "RemoveBackground", "parameters": {"model": {"type": "resource"}, "batch_size": {"type": "number", "default": 8, "value": 8}, "item_key": {"type": "string", "default": "image", "value": "image"}, "output_dir": {"type": "string", "value": "/media/sam/shared/alternative/pokemon_masks"}}, "inputs": ["in"], "outputs": ["out"], "category": "Custom", "label": "RemoveBackground", "key": 12, "isCollapsed": false}, "width": 174, "height": 175, "selected": false, "positionAbsolute": {"x": 671.1501153288792, "y": 288.1274724574072}, "dragging": true, "parentId": "2", "hidden": false}, {"id": "2", "type": "group", "position": {"x": 417.53612302022213, "y": 228.60709744219753}, "width": 487, "height": 306, "data": {"label": "Group", "exports": {"inputs": [{"id": "1", "name": "in", "type": "step"}, {"id": "0", "name": "resource", "type": "resource"}], "outputs": [{"id": "0", "name": "out", "type": "step"}]}, "isCollapsed": false}, "style": {"width": 487, "height": 306}, "resizing": false, "selected": false, "positionAbsolute": {"x": 417.53612302022213, "y": 228.60709744219753}, "dragging": true}, {"id": "3", "type": "export", "position": {"x": 171.28302237599206, "y": 307.94365582341436}, "data": {"label": "split_fn", "exportType": "input", "isResource": true, "isCollapsed": false, "isEditing": false}, "width": 150, "height": 24, "selected": false, "positionAbsolute": {"x": 171.28302237599206, "y": 307.94365582341436}, "dragging": true}, {"id": "4", "type": "export", "position": {"x": 169.3283191390251, "y": 276.5582983666894}, "data": {"label": "Input", "exportType": "input", "isResource": false, "isCollapsed": false, "isEditing": false}, "width": 150, "height": 24, "selected": false, "positionAbsolute": {"x": 169.3283191390251, "y": 276.5582983666894}, "dragging": true}, {"id": "5", "type": "export", "position": {"x": 980.069924178094, "y": 281.42455113963734}, "data": {"label": "Output", "exportType": "output", "isResource": false, "isCollapsed": false}, "width": 150, "height": 24, "positionAbsolute": {"x": 980.069924178094, "y": 281.42455113963734}}, {"id": "6", "type": "resource", "position": {"x": 65.7467508136707, "y": 199.57544189414847}, "data": {"name": "RMBGModel", "parameters": {"model_name": {"type": "string", "description": "The name of the image processor.", "value": "briaai/RMBG-1.4"}}, "category": "Custom", "label": "RMBGModel", "key": 19, "isCollapsed": true}, "width": 150, "height": 24, "selected": false, "positionAbsolute": {"x": 483.28287383389284, "y": 428.182539336346}, "dragging": true, "parentId": "2", "hidden": false}, {"id": "7", "type": "step", "position": {"x": 78.30458080504991, "y": 20.95433445659424}, "data": {"name": "Split", "parameters": {"split_fn": {"type": "resource"}}, "inputs": ["in"], "outputs": ["A", "B"], "category": "Filtering", "label": "Split", "key": 2, "isCollapsed": false}, "width": 150, "height": 120, "selected": false, "positionAbsolute": {"x": 495.84070382527204, "y": 249.56143189879177}, "dragging": true, "parentId": "2", "hidden": false}], "edges": [{"source": "4", "sourceHandle": "in", "target": "2", "targetHandle": "1", "data": {}, "id": "reactflow__edge-4in-21"}, {"source": "6", "sourceHandle": "resource", "target": "0", "targetHandle": "model", "data": {}, "id": "reactflow__edge-6resource-0model"}, {"source": "0", "sourceHandle": "out", "target": "2", "targetHandle": "0_inner", "data": {}, "id": "reactflow__edge-0out-20_inner"}, {"source": "2", "sourceHandle": "0", "target": "5", "targetHandle": "out", "data": {}, "id": "reactflow__edge-20-5out"}, {"source": "3", "sourceHandle": "in", "target": "2", "targetHandle": "0", "data": {}, "id": "reactflow__edge-3in-20"}, {"source": "2", "sourceHandle": "1_inner", "target": "7", "targetHandle": "in", "data": {}, "id": "reactflow__edge-21_inner-7in"}, {"source": "2", "sourceHandle": "0_inner", "target": "7", "targetHandle": "split_fn", "data": {}, "id": "reactflow__edge-20_inner-7split_fn"}, {"source": "7", "sourceHandle": "A", "target": "0", "targetHandle": "in", "data": {}, "id": "reactflow__edge-7A-0in"}]}
|
workflow/custom_nodes/model.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from graphbook import param, resource
|
2 |
+
from transformers import AutoModelForImageSegmentation
|
3 |
+
|
4 |
+
|
5 |
+
@resource("BackgroundRemoval/RMBGModel")
|
6 |
+
@param(
|
7 |
+
"model_name",
|
8 |
+
"string",
|
9 |
+
description="The name of the RMBG model.",
|
10 |
+
default="briaai/RMBG-1.4",
|
11 |
+
)
|
12 |
+
@param(
|
13 |
+
"use_cuda",
|
14 |
+
"boolean",
|
15 |
+
description="Whether to use CUDA acceleration.",
|
16 |
+
default=True,
|
17 |
+
)
|
18 |
+
def rmbg_model(self):
|
19 |
+
model = AutoModelForImageSegmentation.from_pretrained(
|
20 |
+
self.model_name, trust_remote_code=True
|
21 |
+
)
|
22 |
+
if self.use_cuda:
|
23 |
+
return model.to("cuda")
|
24 |
+
return model
|
workflow/custom_nodes/rmbg.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from graphbook import steps
|
2 |
+
from transformers import AutoModelForImageSegmentation
|
3 |
+
import torchvision.transforms.functional as F
|
4 |
+
import torch.nn.functional
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
import os.path as osp
|
8 |
+
|
9 |
+
|
10 |
+
class RemoveBackground(steps.BatchStep):
|
11 |
+
RequiresInput = True
|
12 |
+
Outputs = ["out"]
|
13 |
+
Parameters = {
|
14 |
+
"batch_size": {
|
15 |
+
"type": "number",
|
16 |
+
"description": "The batch size for background removal.",
|
17 |
+
"default": 8,
|
18 |
+
},
|
19 |
+
"model": {
|
20 |
+
"type": "resource",
|
21 |
+
"description": "The model to use for background removal.",
|
22 |
+
},
|
23 |
+
"output_dir": {
|
24 |
+
"type": "string",
|
25 |
+
"description": "The directory to save the output images.",
|
26 |
+
"default": "/tmp/output",
|
27 |
+
},
|
28 |
+
}
|
29 |
+
Category = "BackgroundRemoval"
|
30 |
+
|
31 |
+
def __init__(self, batch_size: int, model: AutoModelForImageSegmentation, output_dir: str):
|
32 |
+
super().__init__(batch_size, "image")
|
33 |
+
self.model = model
|
34 |
+
self.output_dir = output_dir
|
35 |
+
if self.output_dir:
|
36 |
+
os.makedirs(self.output_dir, exist_ok=True)
|
37 |
+
|
38 |
+
def load_fn(self, item: dict) -> torch.Tensor:
|
39 |
+
return load_image_as_tensor(item)
|
40 |
+
|
41 |
+
def dump_fn(self, t: torch.Tensor, output_path: str):
|
42 |
+
save_image_to_disk(t, output_path)
|
43 |
+
|
44 |
+
@torch.no_grad()
|
45 |
+
def on_item_batch(self, tensors, items, notes):
|
46 |
+
def get_output_path(note):
|
47 |
+
label = ""
|
48 |
+
if note["labels"] == 0:
|
49 |
+
label = "cat"
|
50 |
+
else:
|
51 |
+
label = "dog"
|
52 |
+
return osp.join(self.output_dir, label, f"{note['image']['shm_id']}.jpg")
|
53 |
+
|
54 |
+
og_sizes = [t.shape[1:] for t in tensors]
|
55 |
+
|
56 |
+
images = [
|
57 |
+
F.normalize(
|
58 |
+
torch.nn.functional.interpolate(
|
59 |
+
torch.unsqueeze(image, 0), size=[1024, 1024], mode="bilinear"
|
60 |
+
),
|
61 |
+
[0.5, 0.5, 0.5],
|
62 |
+
[1.0, 1.0, 1.0],
|
63 |
+
)
|
64 |
+
for image in tensors
|
65 |
+
]
|
66 |
+
images = torch.stack(images).to("cuda")
|
67 |
+
images = torch.squeeze(images, 1)
|
68 |
+
tup = self.model(images)
|
69 |
+
result = tup[0][0]
|
70 |
+
ma = torch.max(result)
|
71 |
+
mi = torch.min(result)
|
72 |
+
result = (result - mi) / (ma - mi)
|
73 |
+
resized = [
|
74 |
+
torch.squeeze(
|
75 |
+
torch.nn.functional.interpolate(
|
76 |
+
torch.unsqueeze(image, 0), size=og_size, mode="bilinear"
|
77 |
+
),
|
78 |
+
0,
|
79 |
+
).cpu()
|
80 |
+
for image, og_size in zip(result, og_sizes)
|
81 |
+
]
|
82 |
+
paths = [
|
83 |
+
get_output_path(note) for note in notes
|
84 |
+
]
|
85 |
+
removed_bg = list(zip(resized, paths))
|
86 |
+
for path, note in zip(paths, notes):
|
87 |
+
masks = note["masks"]
|
88 |
+
if masks is None:
|
89 |
+
masks = []
|
90 |
+
masks.append({"value": path, "type": "image"})
|
91 |
+
note["masks"] = masks
|
92 |
+
|
93 |
+
return removed_bg
|
94 |
+
|
95 |
+
|
96 |
+
def load_image_as_tensor(item: dict) -> torch.Tensor:
|
97 |
+
im = item["value"]
|
98 |
+
image = F.to_tensor(im)
|
99 |
+
if image.shape[0] == 1:
|
100 |
+
image = image.repeat(3, 1, 1)
|
101 |
+
elif image.shape[0] == 4:
|
102 |
+
image = image[:3]
|
103 |
+
|
104 |
+
return image
|
105 |
+
|
106 |
+
|
107 |
+
def save_image_to_disk(t: torch.Tensor, output_path: str):
|
108 |
+
dir = osp.dirname(output_path)
|
109 |
+
os.makedirs(dir, exist_ok=True)
|
110 |
+
img = F.to_pil_image(t)
|
111 |
+
img.save(output_path)
|