rsakadewa7
commited on
Update predict.py
Browse files- predict.py +213 -205
predict.py
CHANGED
@@ -1,206 +1,214 @@
|
|
1 |
-
# Import libraries
|
2 |
-
import logging
|
3 |
-
import re
|
4 |
-
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
-
import tensorflow as tf
|
7 |
-
import nltk
|
8 |
-
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
|
9 |
-
from transformers import AutoTokenizer, TFBertModel
|
10 |
-
from tensorflow.keras import backend as K
|
11 |
-
from tensorflow.keras.models import load_model
|
12 |
-
from tensorflow.keras.layers import Layer
|
13 |
-
from tensorflow_addons.optimizers import AdamW
|
14 |
-
import streamlit as st
|
15 |
-
from nltk.corpus import stopwords
|
16 |
-
from concurrent.futures import ThreadPoolExecutor
|
17 |
-
import kagglehub
|
18 |
-
import os
|
19 |
-
|
20 |
-
# Text Processing
|
21 |
-
nltk.download('punkt')
|
22 |
-
nltk.download('stopwords')
|
23 |
-
|
24 |
-
# Logging configuration
|
25 |
-
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
26 |
-
|
27 |
-
# Load dataset
|
28 |
-
def load_dataset():
|
29 |
-
try:
|
30 |
-
path = kagglehub.dataset_download("dannytheodore/brimo-app-review")
|
31 |
-
dataset_path = f"{path}/brimo_googleplaystore_review.csv"
|
32 |
-
return pd.read_csv(dataset_path, index_col=0)
|
33 |
-
except Exception as e:
|
34 |
-
logging.error(f"Error loading dataset: {e}")
|
35 |
-
st.error("Failed to load the dataset.")
|
36 |
-
return None
|
37 |
-
|
38 |
-
# Map the labels to positive, neutral, negative
|
39 |
-
def map_labels(score):
|
40 |
-
if score >= 4:
|
41 |
-
return 2 # Positive
|
42 |
-
elif score == 3:
|
43 |
-
return 1 # Neutral
|
44 |
-
else:
|
45 |
-
return 0 # Negative
|
46 |
-
|
47 |
-
# Preprocess text
|
48 |
-
def preprocess_text(text, stop_words, stemmer):
|
49 |
-
try:
|
50 |
-
text = text.lower()
|
51 |
-
text = re.sub(r"@[A-Za-z0-9_]+", " ", text) # Remove mentions
|
52 |
-
text = re.sub(r"#[A-Za-z0-9_]+", " ", text) # Remove hashtags
|
53 |
-
text = re.sub(r"http\S+", " ", text) # Remove URLs
|
54 |
-
text = re.sub(r"www.\S+", " ", text) # Remove www URLs
|
55 |
-
text = re.sub(r"[^A-Za-z\s']", " ", text) # Remove non-letter characters
|
56 |
-
tokens = text.split()
|
57 |
-
tokens = [word for word in tokens if word not in stop_words] # Remove stopwords
|
58 |
-
tokens = [stemmer.stem(word) for word in tokens] # Apply stemming
|
59 |
-
return ' '.join(tokens)
|
60 |
-
except Exception as e:
|
61 |
-
logging.error(f"Error processing text: {text}\n{e}")
|
62 |
-
return text
|
63 |
-
|
64 |
-
# Preprocess and tokenize reviews asynchronously
|
65 |
-
def preprocess_and_tokenize_reviews(reviews, tokenizer, stop_words, stemmer, max_length=128):
|
66 |
-
with ThreadPoolExecutor() as executor:
|
67 |
-
cleaned_reviews = list(executor.map(lambda x: preprocess_text(x, stop_words, stemmer), reviews))
|
68 |
-
return tokenizer(cleaned_reviews, padding='max_length', truncation=True, max_length=max_length, return_tensors='tf')
|
69 |
-
|
70 |
-
# Custom Keras Layer
|
71 |
-
class BertLayer(Layer):
|
72 |
-
def __init__(self, base_model, **kwargs):
|
73 |
-
super(BertLayer, self).__init__(**kwargs)
|
74 |
-
self.base_model = base_model
|
75 |
-
|
76 |
-
def call(self, inputs):
|
77 |
-
input_ids, attention_mask = inputs
|
78 |
-
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
|
79 |
-
return outputs.last_hidden_state
|
80 |
-
|
81 |
-
def get_config(self):
|
82 |
-
config = super(BertLayer, self).get_config()
|
83 |
-
config.update({"base_model": self.base_model})
|
84 |
-
return config
|
85 |
-
|
86 |
-
# Add Pooler Layer (from the first [CLS] token)
|
87 |
-
class PoolerLayer(Layer):
|
88 |
-
def __init__(self, **kwargs):
|
89 |
-
super(PoolerLayer, self).__init__(**kwargs)
|
90 |
-
|
91 |
-
def call(self, inputs):
|
92 |
-
cls_token = inputs[:, 0, :] # First token's output (the [CLS] token)
|
93 |
-
pooled_output = tf.keras.activations.tanh(cls_token) # Apply tanh activation
|
94 |
-
return pooled_output
|
95 |
-
|
96 |
-
# Custom F1 Score Metric
|
97 |
-
class F1Score(tf.keras.metrics.Metric):
|
98 |
-
def __init__(self, name="f1_score", **kwargs):
|
99 |
-
super(F1Score, self).__init__(name=name, **kwargs)
|
100 |
-
self.true_positives = self.add_weight(name="tp", initializer="zeros")
|
101 |
-
self.false_positives = self.add_weight(name="fp", initializer="zeros")
|
102 |
-
self.false_negatives = self.add_weight(name="fn", initializer="zeros")
|
103 |
-
|
104 |
-
def update_state(self, y_true, y_pred, sample_weight=None):
|
105 |
-
y_pred = tf.argmax(y_pred, axis=-1)
|
106 |
-
y_true = tf.argmax(y_true, axis=-1)
|
107 |
-
tp = tf.reduce_sum(tf.cast((y_true == y_pred) & (y_true != 0), tf.float32))
|
108 |
-
fp = tf.reduce_sum(tf.cast((y_true != y_pred) & (y_pred != 0), tf.float32))
|
109 |
-
fn = tf.reduce_sum(tf.cast((y_true != y_pred) & (y_true != 0), tf.float32))
|
110 |
-
self.true_positives.assign_add(tp)
|
111 |
-
self.false_positives.assign_add(fp)
|
112 |
-
self.false_negatives.assign_add(fn)
|
113 |
-
|
114 |
-
def result(self):
|
115 |
-
precision = self.true_positives / (self.true_positives + self.false_positives + K.epsilon())
|
116 |
-
recall = self.true_positives / (self.true_positives + self.false_negatives + K.epsilon())
|
117 |
-
f1 = 2 * (precision * recall) / (precision + recall + K.epsilon())
|
118 |
-
return f1
|
119 |
-
|
120 |
-
def reset_state(self):
|
121 |
-
self.true_positives.assign(0)
|
122 |
-
self.false_positives.assign(0)
|
123 |
-
self.false_negatives.assign(0)
|
124 |
-
|
125 |
-
# Load model and tokenizer
|
126 |
-
def load_model_and_tokenizer():
|
127 |
-
try:
|
128 |
-
model_path = 'best_model.h5'
|
129 |
-
if os.path.exists(model_path):
|
130 |
-
model = load_model(model_path, custom_objects={'TFBertModel': TFBertModel, 'BertLayer': BertLayer, 'PoolerLayer': PoolerLayer, 'F1Score': F1Score})
|
131 |
-
else:
|
132 |
-
st.error("Model file not found. Please check the file path.")
|
133 |
-
return None, None
|
134 |
-
except Exception as e:
|
135 |
-
logging.error(f"Error loading model: {e}")
|
136 |
-
st.error("Failed to load the model. Please check the model file and try again.")
|
137 |
-
return None, None
|
138 |
-
|
139 |
-
# Recreate the AdamW optimizer
|
140 |
-
optimizer = AdamW(learning_rate=2e-5, weight_decay=1e-5)
|
141 |
-
|
142 |
-
# Recompile the model with the AdamW optimizer
|
143 |
-
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=[F1Score()])
|
144 |
-
|
145 |
-
# Load tokenizer from the tokenizer folder
|
146 |
-
try:
|
147 |
-
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1')
|
148 |
-
except Exception as e:
|
149 |
-
logging.error(f"Error loading tokenizer: {e}")
|
150 |
-
st.error("Failed to load the tokenizer. Please check the tokenizer files.")
|
151 |
-
return None, None
|
152 |
-
|
153 |
-
return model, tokenizer
|
154 |
-
|
155 |
-
|
156 |
-
# Sentiment mapping
|
157 |
-
sentiment_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'}
|
158 |
-
|
159 |
-
# Run Streamlit app
|
160 |
-
def run(model, tokenizer, stop_words, stemmer):
|
161 |
-
#
|
162 |
-
|
163 |
-
st.
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
st.error("Failed to load the model or tokenizer. Please check the model file.")
|
|
|
1 |
+
# Import libraries
|
2 |
+
import logging
|
3 |
+
import re
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
import nltk
|
8 |
+
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
|
9 |
+
from transformers import AutoTokenizer, TFBertModel
|
10 |
+
from tensorflow.keras import backend as K
|
11 |
+
from tensorflow.keras.models import load_model
|
12 |
+
from tensorflow.keras.layers import Layer
|
13 |
+
from tensorflow_addons.optimizers import AdamW
|
14 |
+
import streamlit as st
|
15 |
+
from nltk.corpus import stopwords
|
16 |
+
from concurrent.futures import ThreadPoolExecutor
|
17 |
+
import kagglehub
|
18 |
+
import os
|
19 |
+
|
20 |
+
# Text Processing
|
21 |
+
nltk.download('punkt')
|
22 |
+
nltk.download('stopwords')
|
23 |
+
|
24 |
+
# Logging configuration
|
25 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
26 |
+
|
27 |
+
# Load dataset
|
28 |
+
def load_dataset():
|
29 |
+
try:
|
30 |
+
path = kagglehub.dataset_download("dannytheodore/brimo-app-review")
|
31 |
+
dataset_path = f"{path}/brimo_googleplaystore_review.csv"
|
32 |
+
return pd.read_csv(dataset_path, index_col=0)
|
33 |
+
except Exception as e:
|
34 |
+
logging.error(f"Error loading dataset: {e}")
|
35 |
+
st.error("Failed to load the dataset.")
|
36 |
+
return None
|
37 |
+
|
38 |
+
# Map the labels to positive, neutral, negative
|
39 |
+
def map_labels(score):
|
40 |
+
if score >= 4:
|
41 |
+
return 2 # Positive
|
42 |
+
elif score == 3:
|
43 |
+
return 1 # Neutral
|
44 |
+
else:
|
45 |
+
return 0 # Negative
|
46 |
+
|
47 |
+
# Preprocess text
|
48 |
+
def preprocess_text(text, stop_words, stemmer):
|
49 |
+
try:
|
50 |
+
text = text.lower()
|
51 |
+
text = re.sub(r"@[A-Za-z0-9_]+", " ", text) # Remove mentions
|
52 |
+
text = re.sub(r"#[A-Za-z0-9_]+", " ", text) # Remove hashtags
|
53 |
+
text = re.sub(r"http\S+", " ", text) # Remove URLs
|
54 |
+
text = re.sub(r"www.\S+", " ", text) # Remove www URLs
|
55 |
+
text = re.sub(r"[^A-Za-z\s']", " ", text) # Remove non-letter characters
|
56 |
+
tokens = text.split()
|
57 |
+
tokens = [word for word in tokens if word not in stop_words] # Remove stopwords
|
58 |
+
tokens = [stemmer.stem(word) for word in tokens] # Apply stemming
|
59 |
+
return ' '.join(tokens)
|
60 |
+
except Exception as e:
|
61 |
+
logging.error(f"Error processing text: {text}\n{e}")
|
62 |
+
return text
|
63 |
+
|
64 |
+
# Preprocess and tokenize reviews asynchronously
|
65 |
+
def preprocess_and_tokenize_reviews(reviews, tokenizer, stop_words, stemmer, max_length=128):
|
66 |
+
with ThreadPoolExecutor() as executor:
|
67 |
+
cleaned_reviews = list(executor.map(lambda x: preprocess_text(x, stop_words, stemmer), reviews))
|
68 |
+
return tokenizer(cleaned_reviews, padding='max_length', truncation=True, max_length=max_length, return_tensors='tf')
|
69 |
+
|
70 |
+
# Custom Keras Layer
|
71 |
+
class BertLayer(Layer):
|
72 |
+
def __init__(self, base_model, **kwargs):
|
73 |
+
super(BertLayer, self).__init__(**kwargs)
|
74 |
+
self.base_model = base_model
|
75 |
+
|
76 |
+
def call(self, inputs):
|
77 |
+
input_ids, attention_mask = inputs
|
78 |
+
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
|
79 |
+
return outputs.last_hidden_state
|
80 |
+
|
81 |
+
def get_config(self):
|
82 |
+
config = super(BertLayer, self).get_config()
|
83 |
+
config.update({"base_model": self.base_model})
|
84 |
+
return config
|
85 |
+
|
86 |
+
# Add Pooler Layer (from the first [CLS] token)
|
87 |
+
class PoolerLayer(Layer):
|
88 |
+
def __init__(self, **kwargs):
|
89 |
+
super(PoolerLayer, self).__init__(**kwargs)
|
90 |
+
|
91 |
+
def call(self, inputs):
|
92 |
+
cls_token = inputs[:, 0, :] # First token's output (the [CLS] token)
|
93 |
+
pooled_output = tf.keras.activations.tanh(cls_token) # Apply tanh activation
|
94 |
+
return pooled_output
|
95 |
+
|
96 |
+
# Custom F1 Score Metric
|
97 |
+
class F1Score(tf.keras.metrics.Metric):
|
98 |
+
def __init__(self, name="f1_score", **kwargs):
|
99 |
+
super(F1Score, self).__init__(name=name, **kwargs)
|
100 |
+
self.true_positives = self.add_weight(name="tp", initializer="zeros")
|
101 |
+
self.false_positives = self.add_weight(name="fp", initializer="zeros")
|
102 |
+
self.false_negatives = self.add_weight(name="fn", initializer="zeros")
|
103 |
+
|
104 |
+
def update_state(self, y_true, y_pred, sample_weight=None):
|
105 |
+
y_pred = tf.argmax(y_pred, axis=-1)
|
106 |
+
y_true = tf.argmax(y_true, axis=-1)
|
107 |
+
tp = tf.reduce_sum(tf.cast((y_true == y_pred) & (y_true != 0), tf.float32))
|
108 |
+
fp = tf.reduce_sum(tf.cast((y_true != y_pred) & (y_pred != 0), tf.float32))
|
109 |
+
fn = tf.reduce_sum(tf.cast((y_true != y_pred) & (y_true != 0), tf.float32))
|
110 |
+
self.true_positives.assign_add(tp)
|
111 |
+
self.false_positives.assign_add(fp)
|
112 |
+
self.false_negatives.assign_add(fn)
|
113 |
+
|
114 |
+
def result(self):
|
115 |
+
precision = self.true_positives / (self.true_positives + self.false_positives + K.epsilon())
|
116 |
+
recall = self.true_positives / (self.true_positives + self.false_negatives + K.epsilon())
|
117 |
+
f1 = 2 * (precision * recall) / (precision + recall + K.epsilon())
|
118 |
+
return f1
|
119 |
+
|
120 |
+
def reset_state(self):
|
121 |
+
self.true_positives.assign(0)
|
122 |
+
self.false_positives.assign(0)
|
123 |
+
self.false_negatives.assign(0)
|
124 |
+
|
125 |
+
# Load model and tokenizer
|
126 |
+
def load_model_and_tokenizer():
|
127 |
+
try:
|
128 |
+
model_path = 'best_model.h5'
|
129 |
+
if os.path.exists(model_path):
|
130 |
+
model = load_model(model_path, custom_objects={'TFBertModel': TFBertModel, 'BertLayer': BertLayer, 'PoolerLayer': PoolerLayer, 'F1Score': F1Score})
|
131 |
+
else:
|
132 |
+
st.error("Model file not found. Please check the file path.")
|
133 |
+
return None, None
|
134 |
+
except Exception as e:
|
135 |
+
logging.error(f"Error loading model: {e}")
|
136 |
+
st.error("Failed to load the model. Please check the model file and try again.")
|
137 |
+
return None, None
|
138 |
+
|
139 |
+
# Recreate the AdamW optimizer
|
140 |
+
optimizer = AdamW(learning_rate=2e-5, weight_decay=1e-5)
|
141 |
+
|
142 |
+
# Recompile the model with the AdamW optimizer
|
143 |
+
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=[F1Score()])
|
144 |
+
|
145 |
+
# Load tokenizer from the tokenizer folder
|
146 |
+
try:
|
147 |
+
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1')
|
148 |
+
except Exception as e:
|
149 |
+
logging.error(f"Error loading tokenizer: {e}")
|
150 |
+
st.error("Failed to load the tokenizer. Please check the tokenizer files.")
|
151 |
+
return None, None
|
152 |
+
|
153 |
+
return model, tokenizer
|
154 |
+
|
155 |
+
|
156 |
+
# Sentiment mapping
|
157 |
+
sentiment_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'}
|
158 |
+
|
159 |
+
# Run Streamlit app
|
160 |
+
def run(model, tokenizer, stop_words, stemmer):
|
161 |
+
# Add a banner image
|
162 |
+
banner_image = "https://businessnews.co.id/wp-content/uploads/2021/04/Screenshot_112.jpg"
|
163 |
+
st.image(banner_image, use_column_width=True)
|
164 |
+
|
165 |
+
|
166 |
+
# Set title and description
|
167 |
+
st.title('Sentiment Analysis using IndoBERT')
|
168 |
+
st.subheader('This application analyzes the sentiment of user-provided reviews.')
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
# Input form
|
174 |
+
with st.form(key='review_form'):
|
175 |
+
review_input = st.text_area("Enter Review:", height=150)
|
176 |
+
submit_button = st.form_submit_button("Analyze Sentiment")
|
177 |
+
|
178 |
+
if submit_button:
|
179 |
+
if review_input:
|
180 |
+
# Preprocess and tokenize the review
|
181 |
+
tokenized_review = preprocess_and_tokenize_reviews([review_input], tokenizer, stop_words, stemmer)
|
182 |
+
|
183 |
+
# Make prediction
|
184 |
+
if model:
|
185 |
+
predictions = model.predict({'input_ids': tokenized_review['input_ids'], 'attention_mask': tokenized_review['attention_mask']})
|
186 |
+
predicted_label = np.argmax(predictions, axis=-1)
|
187 |
+
sentiment = sentiment_map[predicted_label[0]]
|
188 |
+
st.write(f"### Predicted Sentiment: {sentiment}")
|
189 |
+
else:
|
190 |
+
st.error("Model is not loaded. Please check the model file and try again.")
|
191 |
+
else:
|
192 |
+
st.error("Please enter a review to analyze.")
|
193 |
+
|
194 |
+
if __name__ == "__main__":
|
195 |
+
# Load necessary components
|
196 |
+
df = load_dataset()
|
197 |
+
model, tokenizer = load_model_and_tokenizer()
|
198 |
+
|
199 |
+
if df is not None and model is not None and tokenizer is not None:
|
200 |
+
# Preprocess dataset and prepare stopwords and stemmer
|
201 |
+
manual_stopwords = ["di", "ke", "dari", "yang", "dan", "atau", "dengan", "untuk", "ini", "itu", "aja", "saja", "lah", "bri", "brimo", "aplikasi", "rekening", "coba", "yg", "ke", "untuk", "nya", "saya", "dia", "dan", "sangat", "video", "login", "apk", "jadi", "akun", "malah", "uang", "banget", "dalam", "atm", "padahal"]
|
202 |
+
stop_words = set(stopwords.words('indonesian'))
|
203 |
+
stop_words.update(manual_stopwords)
|
204 |
+
factory = StemmerFactory()
|
205 |
+
stemmer = factory.create_stemmer()
|
206 |
+
df['label'] = df['score'].apply(map_labels)
|
207 |
+
run(model, tokenizer, stop_words, stemmer)
|
208 |
+
else:
|
209 |
+
if df is None:
|
210 |
+
logging.error("Failed to load dataset.")
|
211 |
+
st.error("Failed to load the dataset. Please check the dataset file.")
|
212 |
+
if model is None or tokenizer is None:
|
213 |
+
logging.error("Failed to load model or tokenizer.")
|
214 |
st.error("Failed to load the model or tokenizer. Please check the model file.")
|