Ship demo
Browse files- app.py +59 -54
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,63 +1,68 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
-
|
47 |
additional_inputs=[
|
48 |
-
gr.
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
gr.Slider(
|
52 |
-
minimum=0.1
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
),
|
58 |
],
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
from routellm.controller import Controller
|
5 |
+
|
6 |
+
TEMPERATURE = 0.8
|
7 |
+
THRESHOLD = 0.11593
|
8 |
+
ROUTER = "mf"
|
9 |
+
|
10 |
+
client = Controller(
|
11 |
+
routers=["mf"],
|
12 |
+
strong_model="gpt-4-1106-preview",
|
13 |
+
weak_model="anyscale/mistralai/Mixtral-8x7B-Instruct-v0.1",
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def predict(message, history, threshold, temperature):
|
18 |
+
# Convert chat history to OpenAI format
|
19 |
+
history_openai_format = [
|
20 |
+
{"role": "system", "content": "You are a helpful AI assistant."}
|
21 |
+
]
|
22 |
+
for human, assistant in history:
|
23 |
+
history_openai_format.append({"role": "user", "content": human})
|
24 |
+
history_openai_format.append(
|
25 |
+
{
|
26 |
+
"role": "assistant",
|
27 |
+
# Remove model name from response
|
28 |
+
"content": re.sub(r"^\[.*?\]\s*", "", assistant),
|
29 |
+
}
|
30 |
+
)
|
31 |
+
history_openai_format.append({"role": "user", "content": message})
|
32 |
+
|
33 |
+
# Create a chat completion request and send it to the API server
|
34 |
+
stream = client.chat.completions.create(
|
35 |
+
model=f"router-{ROUTER}-{threshold}", # Model name to use
|
36 |
+
messages=history_openai_format, # Chat history
|
37 |
+
temperature=temperature, # Temperature for text generation
|
38 |
+
stream=True, # Stream response
|
39 |
+
)
|
40 |
+
print(stream)
|
41 |
+
|
42 |
+
# Read and return generated text from response stream
|
43 |
+
partial_message = ""
|
44 |
+
for i, chunk in enumerate(stream):
|
45 |
+
print(chunk)
|
46 |
+
if i == 0:
|
47 |
+
model_prefix = f"[{chunk.model}]\n"
|
48 |
+
yield model_prefix
|
49 |
+
partial_message += model_prefix
|
50 |
+
partial_message += chunk.choices[0].delta.content or ""
|
51 |
+
yield partial_message
|
52 |
+
|
53 |
+
|
54 |
+
# Create and launch a chat interface with Gradio
|
55 |
demo = gr.ChatInterface(
|
56 |
+
predict,
|
57 |
additional_inputs=[
|
58 |
+
gr.Slider(label="Threshold", minimum=0, maximum=1, value=THRESHOLD, step=0.01),
|
|
|
|
|
59 |
gr.Slider(
|
60 |
+
label="Temperature", minimum=0, maximum=1, value=TEMPERATURE, step=0.1
|
|
|
|
|
|
|
|
|
61 |
),
|
62 |
],
|
63 |
+
title="RouteLLM",
|
64 |
+
description="This is a demo of our matrix factorization router, calibrated so that approximately 50% of harder calls are routed to GPT-4, with remaining calls routed to Mixtral 8x7B.\nSee https://github.com/lm-sys/RouteLLM for details!",
|
65 |
)
|
66 |
|
|
|
67 |
if __name__ == "__main__":
|
68 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
routellm[serve]
|