roubaofeipi commited on
Commit
b7323ae
1 Parent(s): 9171659

Delete inference/t2i_demo.py

Browse files
Files changed (1) hide show
  1. inference/t2i_demo.py +0 -191
inference/t2i_demo.py DELETED
@@ -1,191 +0,0 @@
1
- import os
2
- import yaml
3
- import torch
4
- import sys
5
- sys.path.append(os.path.abspath('./'))
6
- from inference.utils import *
7
- from train import WurstCoreB
8
- from gdf import DDPMSampler
9
- from train import WurstCore_t2i as WurstCoreC
10
- from core.utils import load_or_fail
11
- import numpy as np
12
- import random
13
- import argparse
14
- import gradio as gr
15
-
16
-
17
- def parse_args():
18
- parser = argparse.ArgumentParser()
19
- parser.add_argument( '--height', type=int, default=2560, help='image height')
20
- parser.add_argument('--width', type=int, default=5120, help='image width')
21
- parser.add_argument('--seed', type=int, default=123, help='random seed')
22
- parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
23
- parser.add_argument('--config_c', type=str,
24
- default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation')
25
- parser.add_argument('--config_b', type=str,
26
- default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
27
- parser.add_argument( '--prompt', type=str,
28
- default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
29
- parser.add_argument( '--num_image', type=int, default=1, help='how many images generated')
30
- parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
31
- parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
32
- parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
33
- args = parser.parse_args()
34
- return args
35
-
36
- def clear_image():
37
- return None
38
- def load_message(height, width, seed, prompt, args, stage_a_tiled):
39
- args.height = height
40
- args.width = width
41
- args.seed = seed
42
- args.prompt = prompt + ' rich detail, 4k, high quality'
43
- args.stage_a_tiled = stage_a_tiled
44
- return args
45
- def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
46
- global args
47
- args = load_message(height, width, seed, prompt, args, stage_a_tiled)
48
- torch.manual_seed(args.seed)
49
- random.seed(args.seed)
50
- np.random.seed(args.seed)
51
- dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
52
-
53
- captions = [args.prompt] * args.num_image
54
- height, width = args.height, args.width
55
- batch_size=1
56
- height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
57
- stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
58
- stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
59
-
60
- # Stage C Parameters
61
- extras.sampling_configs['cfg'] = 4
62
- extras.sampling_configs['shift'] = 1
63
- extras.sampling_configs['timesteps'] = 20
64
- extras.sampling_configs['t_start'] = 1.0
65
- extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
66
-
67
-
68
-
69
- # Stage B Parameters
70
- extras_b.sampling_configs['cfg'] = 1.1
71
- extras_b.sampling_configs['shift'] = 1
72
- extras_b.sampling_configs['timesteps'] = 10
73
- extras_b.sampling_configs['t_start'] = 1.0
74
-
75
- for _, caption in enumerate(captions):
76
-
77
-
78
- batch = {'captions': [caption] * batch_size}
79
- #conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
80
- #unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
81
-
82
- conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
83
- unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
84
-
85
-
86
- with torch.no_grad():
87
-
88
-
89
- models.generator.cuda()
90
- print('STAGE C GENERATION***************************')
91
- with torch.cuda.amp.autocast(dtype=dtype):
92
- sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
93
-
94
-
95
-
96
- models.generator.cpu()
97
- torch.cuda.empty_cache()
98
-
99
- conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
100
- unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
101
- conditions_b['effnet'] = sampled_c
102
- unconditions_b['effnet'] = torch.zeros_like(sampled_c)
103
- print('STAGE B + A DECODING***************************')
104
-
105
- with torch.cuda.amp.autocast(dtype=dtype):
106
- sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
107
-
108
- torch.cuda.empty_cache()
109
- imgs = show_images(sampled)
110
- #for idx, img in enumerate(imgs):
111
- #print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
112
- #img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
113
-
114
- return imgs[0]
115
- #print('finished! Results ')
116
-
117
-
118
- with gr.Blocks() as demo:
119
- with gr.Column():
120
- with gr.Row():
121
- with gr.Column():
122
- height = gr.Slider(value=2304, step=32, minimum=1536, maximum=4096, label='Height')
123
- width = gr.Slider(value=4096, step=32, minimum=1536, maximum=5120, label='Width')
124
- seed = gr.Number(value=123, step=1, label='Random Seed')
125
- prompt = gr.Textbox(value='', max_lines=4, label='Text Prompt')
126
- cfg = gr.Slider(value=4, step=0.1, minimum=3, maximum=10, label='CFG')
127
- timesteps = gr.Slider(value=20, step=1, minimum=10, maximum=50, label='Timesteps')
128
- stage_a_tiled = gr.Checkbox(value=False, label='Stage_a_tiled')
129
- with gr.Row():
130
- clear_button = gr.Button("Clear!")
131
- polish_button = gr.Button("Submit!")
132
- with gr.Column():
133
- output_img = gr.Image(label='Output Image', sources=None)
134
- with gr.Column():
135
- prompt2 = gr.Textbox(
136
- value='''
137
- 1. a happy cat
138
- 2. a happy girl
139
- ''', label='Text prompt examples'
140
- )
141
-
142
- polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
143
- polish_button.click(clear_image, inputs=[], outputs=output_img)
144
-
145
- if __name__ == "__main__":
146
-
147
- args = parse_args()
148
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
149
-
150
- config_file = args.config_c
151
- with open(config_file, "r", encoding="utf-8") as file:
152
- loaded_config = yaml.safe_load(file)
153
-
154
- core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
155
-
156
- # SETUP STAGE B
157
- config_file_b = args.config_b
158
- with open(config_file_b, "r", encoding="utf-8") as file:
159
- config_file_b = yaml.safe_load(file)
160
-
161
- core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
162
-
163
- extras = core.setup_extras_pre()
164
- models = core.setup_models(extras)
165
- models.generator.eval().requires_grad_(False)
166
- print("STAGE C READY")
167
-
168
- extras_b = core_b.setup_extras_pre()
169
- models_b = core_b.setup_models(extras_b, skip_clip=True)
170
- models_b = WurstCoreB.Models(
171
- **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
172
- )
173
- models_b.generator.bfloat16().eval().requires_grad_(False)
174
- print("STAGE B READY")
175
-
176
- pretrained_path = args.pretrained_path
177
- sdd = torch.load(pretrained_path, map_location='cpu')
178
- collect_sd = {}
179
- for k, v in sdd.items():
180
- collect_sd[k[7:]] = v
181
-
182
- models.train_norm.load_state_dict(collect_sd)
183
- models.generator.eval()
184
- models.train_norm.eval()
185
-
186
-
187
- demo.launch(
188
- debug=True, share=True,
189
- #server_name='10.160.211.26', server_port=7867
190
-
191
- )