File size: 8,280 Bytes
a625342
 
 
 
 
f82d1d4
 
 
 
0514b29
 
 
 
a625342
 
0514b29
b232e50
62b05b3
a625342
b232e50
63bff46
8043efa
6fd2164
62b05b3
fe4db0a
0514b29
a625342
0514b29
 
 
 
 
 
 
f82d1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4db0a
 
f82d1d4
 
0514b29
 
 
 
 
 
 
fe4db0a
 
 
 
 
 
 
 
 
 
f82d1d4
 
b232e50
f82d1d4
0514b29
fe4db0a
0514b29
f82d1d4
 
 
0514b29
fe4db0a
 
 
 
0514b29
 
 
 
 
 
 
b232e50
 
 
 
 
0514b29
6fd2164
 
0514b29
 
f82d1d4
 
 
0514b29
 
 
 
 
 
f82d1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a625342
f82d1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a625342
 
 
f82d1d4
a625342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b17e747
 
a625342
 
 
 
 
 
f82d1d4
a625342
 
f82d1d4
 
 
 
a625342
 
 
 
 
 
f82d1d4
 
 
 
 
 
 
 
 
 
 
a625342
 
f82d1d4
a625342
f82d1d4
a625342
 
 
 
4368581
 
a625342
f82d1d4
a625342
 
 
 
4368581
a625342
 
 
0514b29
b232e50
0514b29
a625342
 
 
 
f82d1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a625342
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

import random
import streamlit as st
import pandas as pd
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModel
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.pairwise import pairwise_distances
import faiss
from sklearn.feature_extraction.text import TfidfVectorizer
import pickle


movies = pd.read_csv('data/data.csv')
toggle_state = False#st.sidebar.checkbox("режим разметки")
input_search = st.text_input('Search',  value='собака очень преданно ждала хозяина на вокзале')

tfidf_slider = st.sidebar.slider("tf_idf_description", 0.0, 1.0, 0.9)
tf_idf_name = st.sidebar.slider("tf_idf_name", 0.0, 1.0, 0.66/100)
tf_idf_actors = st.sidebar.slider("tf_idf_actors", 0.0, 1.0, 0.9)
bert_weight = st.sidebar.slider("bert_weight", 0.0, 1.0, 0.5)
show_num = st.sidebar.slider("show_num", 1, 100, 10)

data = np.load('data/embeddings_bert.npy')

def top_indices(array, n,upsc=False):
    # Получаем индексы элементов, отсортированных по убыванию
    st.session_state["pred"] = array
    sorted_indices = np.argsort(array)[::1 if upsc else -1]
    # Выбираем первые n индексов
    top_n_indices = sorted_indices[:n]
    return top_n_indices

@st.cache_resource
def get_embeddings():
    tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
    model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
    # model.cuda()  
    return model, tokenizer

@st.cache_data
def embed_bert_cls(text, ):
    model, tokenizer = get_embeddings()
    t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
    with torch.no_grad():
        model_output = model(**{k: v.to(model.device) for k, v in t.items()})
    embeddings = model_output.last_hidden_state[:, 0, :]
    embeddings = torch.nn.functional.normalize(embeddings)

    
    return embeddings[0].cpu().numpy()

@st.cache_resource
def getmodels():

    with open('data/logreg.pkl', 'rb') as f:
        logreg = pickle.load(f)
    with open('data/tf_idf_vectorizer.pkl', 'rb') as f:
        vectorizer = pickle.load(f)
    
    with open('data/vectorizer_actors.pkl', 'rb') as f:
        vectorizer_actors = pickle.load(f)

    tfidf_matrix = vectorizer.transform(movies['description'])
    tfidf_matrix2 = vectorizer.transform(movies['name'])
    tfidf_actors = vectorizer_actors.transform(movies['actors'].fillna(''))
    

    return logreg, vectorizer,vectorizer_actors ,tfidf_matrix,tfidf_matrix2,tfidf_actors

@st.cache_data
def predict_rating(input_search,tfidf_slider,tf_idf_name,tf_idf_actors,bert_weight):

    
    logreg, vectorizer,vectorizer_actors,tfidf_matrix,tfidf_matrix2,tfidf_actors=getmodels()

    emb = embed_bert_cls(input_search)
    X=np.column_stack((data, np.tile(emb, (data.shape[0], 1))))

    user_tfidf = vectorizer.transform([input_search])
    user_actors = vectorizer_actors.transform([input_search])

    similarity_actors=cosine_similarity(user_actors, tfidf_actors).reshape(-1)

    similarity_scores_desc = cosine_similarity(user_tfidf, tfidf_matrix)
    similarity_scores_name = cosine_similarity(user_tfidf, tfidf_matrix2)

    y_log = logreg.predict(X)
    y_emb = cosine_similarity(data, emb.reshape(1, -1)).reshape(-1)


    y=(similarity_scores_desc*tfidf_slider
       +similarity_scores_name*tf_idf_name
       +y_emb*bert_weight
       +similarity_actors*tf_idf_actors
       ).reshape(-1)  
    st.session_state["pred"]=y

    return top_indices(y, show_num,upsc=False)










    


def saverank(index, new_X,new_y):
    dx=np.load('X.npy')
    dy=np.load('y.npy')
    dx=np.concatenate((dx, new_X.reshape(1,-1)))
    dy=np.concatenate((dy,np.array([new_y])))
    np.save('X.npy',dx)
    np.save('y.npy',dy)

def ask_rating(movie,index):
    # Создаем переменную для хранения оценки
    rating = 0

    # Создаем горизонтальный столбец
    col1, col2, col3, col4, col5 = st.columns(5)

    # В каждом столбце выводим кнопку оценки
    with col1:
        b1 = st.button("1",key="1"+str(index))
    with col2:
        b2 = st.button("2" ,key="2"+str(index))
    with col3:
        b3 = st.button("3",key="3"+str(index))
    with col4:
        b4 = st.button("4",key="4"+str(index))
    with col5:
        b5 = st.button("5",key="5"+str(index))

    if b1:
        rating = 1
    if b2:
        rating = 2
    if b3:
        rating = 3
    if b4:
        rating = 4
    if b5:
        rating = 5
    
    if rating>0:
        saverank(index,st.session_state["X"][index],rating)



def display_rating(rating):

    stars = int(rating / 2) # Переводим рейтинг из 0-10 в 0-5 и округляем до целого
    remainder = rating % 2 # Доля рейтинга, которая не переводится в целое количество звезд
    star_str = '🌕' * stars
    if remainder >= 0.5:
        star_str += '🌗' # Добавляем половину звезды в виде половины луны, если есть доля больше или равная 0.5
    return star_str

def display_movie_card(df, index):

    movie = df.iloc[index]
    col1, col2 = st.columns([1, 3])

    with col1:
        st.image(movie['poster'], use_column_width=True)

        st.write(f"Жанр: {movie['genres']}")
        st.write(f"Страна: {movie['country']}")
        st.write(f"рейтинг: {movie['age']}")
        if "pred" in st.session_state:
            st.write(st.session_state["pred"][index])

    with col2:
        year = str(int(movie['year'])) if not np.isnan(movie['year']) else ""
        st.markdown(f"<h2 style='text-align: left;'>{movie['name']} ({year})</h2>", unsafe_allow_html=True)
        description = ' '.join(movie['description'][:200].split(" ")[:-1]) + '...' if len(movie['description']) > 200 else movie['description']



        e = st.empty()
        b=toggle_state
        if movie['description'] !=description and not toggle_state:
            b = st.button("раскрыть описание",key=index)
        
        with e:
            if b:
                st.write(movie['description'])
            else:
                st.write(description)

    

        if toggle_state:
            ask_rating(movie,index)
            input = st.text_input(' ',key = "search"+str(index))
            if input:
                emb = embed_bert_cls(input)
                fullemb = np.concatenate(( st.session_state["X"][index,:312], emb))
                saverank(index,fullemb,5)

        st.write(f"Актеры: {movie['actors']}")
        imdb,kp = st.columns([1,2])
        with imdb:
            st.write(f"IMDB: {display_rating(movie['imdb'])}" if not np.isnan(movie['imdb']) else "")
        with kp:
            st.write(f"Кинопоиск: { display_rating(movie['kp'])}" if not np.isnan(movie['kp']) else "")
        st.write(f"[смотреть]({movie['link']})")
    st.write("----------------------")


reqs= st.session_state["reqs"] if "reqs" in st.session_state else {}

@st.cache_data
def getnums(df,size=0,text=''):
    if text in reqs:
        return reqs[text]
    else:
        reqs[text]=list(np.random.randint(len(df), size=size))
        st.session_state["reqs"] = reqs
        return reqs[text]


if input_search:
    for i in predict_rating(input_search,tfidf_slider,tf_idf_name,tf_idf_actors,bert_weight):
        display_movie_card(movies, i )




def ask_rating(movie):
    # Создаем переменную для хранения оценки
    rating = 0

    # Создаем горизонтальный столбец
    col1, col2, col3, col4, col5 = st.columns(5)

    # В каждом столбце выводим кнопку оценки
    with col1:
        b1 = st.button("1")
    with col2:
        b2 = st.button("2")
    with col3:
        b3 = st.button("3")
    with col4:
        b4 = st.button("4")
    with col5:
        b5 = st.button("5")

    if b1:
        rating = 1
    if b2:
        rating = 2
    if b3:
        rating = 3
    if b4:
        rating = 4
    if b5:
        rating = 5
    return rating