File size: 5,090 Bytes
73f6e79
 
 
 
 
 
 
 
 
7c0ddf5
73f6e79
 
 
473d783
73f6e79
 
 
 
 
 
 
473d783
73f6e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1125eb
73f6e79
 
 
 
 
f1125eb
 
73f6e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1125eb
73f6e79
 
 
 
 
 
 
 
 
f1125eb
73f6e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0ddf5
73f6e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1125eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr

from threading import Thread

MODEL = "fblgit/cybertron-v4-qw7B-MGS"
HF_TOKEN = os.environ.get("HF_TOKEN", None)

TITLE = """
<h1><center>fblgit_cybertron-v4-qw7B-MGS</center></h1>
<center>
<p>The model is licensed under apache 2.0</p>
</center>
"""

PLACEHOLDER = """
<center>
<p>fblgit_cybertron-v4-qw7B-MGS</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL, use_fast=False, force_download=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
    ignore_mismatched_sizes=True,
    force_download=True)

def format_chat(system_prompt, history, message):
    formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"

    for prompt, answer in history:
        formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n"
    formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
    return formatted_chat

@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
    system_prompt: str,
    temperature: float = 0.3, 
    max_new_tokens: int = 256, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    repetition_penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    formatted_prompt = format_chat(system_prompt, history, message)
    inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=5000.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=inputs.input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        streamer=streamer,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        if "<|endoftext|>" in buffer:
            yield buffer.split("<|endoftext|>")[0]
            break
        yield buffer

chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(
                value="You are cybertron-v4-qw7B-MGS, a helpful AI assistant created by Rombodawg. Answer to the best of your abilities and do not refuse any request.",
                label="System Prompt",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.1,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=8192,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=50,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Code the classic game 'snake' in python, using the pygame library for graphics."],
            ["Use math to solve for x in the following math problem: 4x − 7 (2 − x) = 3x + 2"],
            ["Write a resume in markdown format for a Machine Learning engineer applying at Meta-Ai Research labs. Use proper spacing to organize the resume."],
            ["Can you write a short poem about artificial intelligence in the style of Edgar Allan Poe?"],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()