Spaces:
Runtime error
Runtime error
rodrigomasini
commited on
Commit
•
f1e655e
1
Parent(s):
38a6e1d
Delete backend-cli.py
Browse files- backend-cli.py +0 -288
backend-cli.py
DELETED
@@ -1,288 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
import os
|
4 |
-
import json
|
5 |
-
|
6 |
-
import socket
|
7 |
-
import random
|
8 |
-
from datetime import datetime
|
9 |
-
|
10 |
-
from src.backend.run_eval_suite import run_evaluation
|
11 |
-
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
12 |
-
from src.backend.sort_queue import sort_models_by_priority
|
13 |
-
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
|
14 |
-
|
15 |
-
from src.backend.manage_requests import EvalRequest
|
16 |
-
from src.leaderboard.read_evals import EvalResult
|
17 |
-
|
18 |
-
from src.envs import QUEUE_REPO, RESULTS_REPO, API
|
19 |
-
from src.utils import my_snapshot_download
|
20 |
-
|
21 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
22 |
-
|
23 |
-
from typing import Optional
|
24 |
-
|
25 |
-
import time
|
26 |
-
|
27 |
-
import logging
|
28 |
-
import pprint
|
29 |
-
|
30 |
-
|
31 |
-
def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir):
|
32 |
-
for i in range(10):
|
33 |
-
try:
|
34 |
-
set_eval_request(api=api, eval_request=eval_request, set_to_status=set_to_status, hf_repo=hf_repo, local_dir=local_dir)
|
35 |
-
return
|
36 |
-
except Exception:
|
37 |
-
time.sleep(60)
|
38 |
-
return
|
39 |
-
|
40 |
-
|
41 |
-
logging.getLogger("openai").setLevel(logging.WARNING)
|
42 |
-
|
43 |
-
logging.basicConfig(level=logging.ERROR)
|
44 |
-
pp = pprint.PrettyPrinter(width=80)
|
45 |
-
|
46 |
-
PENDING_STATUS = "PENDING"
|
47 |
-
RUNNING_STATUS = "RUNNING"
|
48 |
-
FINISHED_STATUS = "FINISHED"
|
49 |
-
FAILED_STATUS = "FAILED"
|
50 |
-
|
51 |
-
TASKS_HARNESS = [task.value for task in Tasks]
|
52 |
-
|
53 |
-
|
54 |
-
my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
55 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
56 |
-
|
57 |
-
|
58 |
-
def sanity_checks():
|
59 |
-
print(f'Device: {DEVICE}')
|
60 |
-
|
61 |
-
# pull the eval dataset from the hub and parse any eval requests
|
62 |
-
# check completed evals and set them to finished
|
63 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
64 |
-
check_completed_evals(api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS,
|
65 |
-
failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND,
|
66 |
-
hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND)
|
67 |
-
return
|
68 |
-
|
69 |
-
|
70 |
-
def request_to_result_name(request: EvalRequest) -> str:
|
71 |
-
# Request: EvalRequest(model='meta-llama/Llama-2-13b-hf', private=False, status='FINISHED',
|
72 |
-
# json_filepath='./eval-queue-bk/meta-llama/Llama-2-13b-hf_eval_request_False_False_False.json',
|
73 |
-
# weight_type='Original', model_type='pretrained', precision='float32', base_model='', revision='main',
|
74 |
-
# submitted_time='2023-09-09T10:52:17Z', likes=389, params=13.016, license='?')
|
75 |
-
#
|
76 |
-
# EvalResult(eval_name='meta-llama_Llama-2-13b-hf_float32', full_model='meta-llama/Llama-2-13b-hf',
|
77 |
-
# org='meta-llama', model='Llama-2-13b-hf', revision='main',
|
78 |
-
# results={'nq_open': 33.739612188365655, 'triviaqa': 74.12505572893447},
|
79 |
-
# precision=<Precision.float32: ModelDetails(name='float32', symbol='')>,
|
80 |
-
# model_type=<ModelType.PT: ModelDetails(name='pretrained', symbol='🟢')>,
|
81 |
-
# weight_type=<WeightType.Original: ModelDetails(name='Original', symbol='')>,
|
82 |
-
# architecture='LlamaForCausalLM', license='?', likes=389, num_params=13.016, date='2023-09-09T10:52:17Z', still_on_hub=True)
|
83 |
-
#
|
84 |
-
org_and_model = request.model.split("/", 1)
|
85 |
-
if len(org_and_model) == 1:
|
86 |
-
model = org_and_model[0]
|
87 |
-
res = f"{model}_{request.precision}"
|
88 |
-
else:
|
89 |
-
org = org_and_model[0]
|
90 |
-
model = org_and_model[1]
|
91 |
-
res = f"{org}_{model}_{request.precision}"
|
92 |
-
return res
|
93 |
-
|
94 |
-
|
95 |
-
def process_evaluation(task: Task, eval_request: EvalRequest) -> dict:
|
96 |
-
batch_size = "auto"
|
97 |
-
|
98 |
-
try:
|
99 |
-
results = run_evaluation(eval_request=eval_request, task_names=[task.benchmark], num_fewshot=task.num_fewshot,
|
100 |
-
batch_size=batch_size, device=DEVICE, use_cache=None, limit=LIMIT)
|
101 |
-
except RuntimeError as e:
|
102 |
-
if "No executable batch size found" in str(e):
|
103 |
-
batch_size = 1
|
104 |
-
results = run_evaluation(eval_request=eval_request, task_names=[task.benchmark], num_fewshot=task.num_fewshot,
|
105 |
-
batch_size=batch_size, device=DEVICE, use_cache=None, limit=LIMIT)
|
106 |
-
else:
|
107 |
-
raise
|
108 |
-
|
109 |
-
print('RESULTS', results)
|
110 |
-
|
111 |
-
dumped = json.dumps(results, indent=2, default=lambda o: '<not serializable>')
|
112 |
-
print(dumped)
|
113 |
-
|
114 |
-
output_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
|
115 |
-
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
116 |
-
with open(output_path, "w") as f:
|
117 |
-
f.write(dumped)
|
118 |
-
|
119 |
-
my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
120 |
-
API.upload_file(path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
|
121 |
-
repo_id=RESULTS_REPO, repo_type="dataset")
|
122 |
-
return results
|
123 |
-
|
124 |
-
|
125 |
-
def process_finished_requests(thr: int) -> bool:
|
126 |
-
sanity_checks()
|
127 |
-
|
128 |
-
current_finished_status = [FINISHED_STATUS, FAILED_STATUS]
|
129 |
-
|
130 |
-
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
|
131 |
-
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
132 |
-
# Sort the evals by priority (first submitted, first run)
|
133 |
-
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
|
134 |
-
|
135 |
-
random.shuffle(eval_requests)
|
136 |
-
|
137 |
-
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND, True)
|
138 |
-
|
139 |
-
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
|
140 |
-
result_name_to_result = {r.eval_name: r for r in eval_results}
|
141 |
-
|
142 |
-
for eval_request in eval_requests:
|
143 |
-
if eval_request.likes >= thr:
|
144 |
-
result_name: str = request_to_result_name(eval_request)
|
145 |
-
|
146 |
-
# Check the corresponding result
|
147 |
-
eval_result: Optional[EvalResult] = result_name_to_result[result_name] if result_name in result_name_to_result else None
|
148 |
-
|
149 |
-
breakpoint()
|
150 |
-
|
151 |
-
task_lst = TASKS_HARNESS.copy()
|
152 |
-
random.shuffle(task_lst)
|
153 |
-
|
154 |
-
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
|
155 |
-
for task in task_lst:
|
156 |
-
task_name = task.benchmark
|
157 |
-
|
158 |
-
if eval_result is None or task_name not in eval_result.results:
|
159 |
-
eval_request: EvalRequest = result_name_to_request[result_name]
|
160 |
-
|
161 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
162 |
-
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
163 |
-
|
164 |
-
results = process_evaluation(task, eval_request)
|
165 |
-
|
166 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
167 |
-
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
168 |
-
|
169 |
-
return True
|
170 |
-
|
171 |
-
return False
|
172 |
-
|
173 |
-
|
174 |
-
def maybe_refresh_results(thr: int) -> bool:
|
175 |
-
sanity_checks()
|
176 |
-
|
177 |
-
current_finished_status = [PENDING_STATUS, FINISHED_STATUS, FAILED_STATUS]
|
178 |
-
|
179 |
-
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
|
180 |
-
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
181 |
-
# Sort the evals by priority (first submitted, first run)
|
182 |
-
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
|
183 |
-
|
184 |
-
random.shuffle(eval_requests)
|
185 |
-
|
186 |
-
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND, True)
|
187 |
-
|
188 |
-
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
|
189 |
-
result_name_to_result = {r.eval_name: r for r in eval_results}
|
190 |
-
|
191 |
-
for eval_request in eval_requests:
|
192 |
-
if eval_request.likes >= thr:
|
193 |
-
result_name: str = request_to_result_name(eval_request)
|
194 |
-
|
195 |
-
# Check the corresponding result
|
196 |
-
eval_result: Optional[EvalResult] = result_name_to_result[result_name] if result_name in result_name_to_result else None
|
197 |
-
|
198 |
-
breakpoint()
|
199 |
-
|
200 |
-
task_lst = TASKS_HARNESS.copy()
|
201 |
-
random.shuffle(task_lst)
|
202 |
-
|
203 |
-
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
|
204 |
-
for task in task_lst:
|
205 |
-
task_name = task.benchmark
|
206 |
-
|
207 |
-
if (eval_result is None or
|
208 |
-
task_name not in eval_result.results or
|
209 |
-
'nq' in task_name or 'trivia' in task_name or 'tqa' in task_name or 'self' in task_name):
|
210 |
-
eval_request: EvalRequest = result_name_to_request[result_name]
|
211 |
-
|
212 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
213 |
-
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
214 |
-
|
215 |
-
results = process_evaluation(task, eval_request)
|
216 |
-
|
217 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
218 |
-
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
219 |
-
|
220 |
-
return True
|
221 |
-
|
222 |
-
|
223 |
-
return False
|
224 |
-
|
225 |
-
|
226 |
-
def process_pending_requests() -> bool:
|
227 |
-
sanity_checks()
|
228 |
-
|
229 |
-
current_pending_status = [PENDING_STATUS]
|
230 |
-
|
231 |
-
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
|
232 |
-
eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
233 |
-
# Sort the evals by priority (first submitted, first run)
|
234 |
-
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
|
235 |
-
|
236 |
-
random.shuffle(eval_requests)
|
237 |
-
|
238 |
-
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
239 |
-
|
240 |
-
if len(eval_requests) == 0:
|
241 |
-
return False
|
242 |
-
|
243 |
-
eval_request = eval_requests[0]
|
244 |
-
pp.pprint(eval_request)
|
245 |
-
|
246 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
247 |
-
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
248 |
-
|
249 |
-
task_lst = TASKS_HARNESS.copy()
|
250 |
-
random.shuffle(task_lst)
|
251 |
-
|
252 |
-
for task in task_lst:
|
253 |
-
results = process_evaluation(task, eval_request)
|
254 |
-
|
255 |
-
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
256 |
-
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
257 |
-
|
258 |
-
return True
|
259 |
-
|
260 |
-
|
261 |
-
if __name__ == "__main__":
|
262 |
-
wait = True
|
263 |
-
|
264 |
-
if socket.gethostname() in {'hamburg', 'neuromancer'} or os.path.isdir("/home/pminervi"):
|
265 |
-
wait = False
|
266 |
-
|
267 |
-
if wait:
|
268 |
-
time.sleep(60 * random.randint(5, 10))
|
269 |
-
|
270 |
-
res = False
|
271 |
-
|
272 |
-
if random.randint(0, 1) == 0:
|
273 |
-
res = process_pending_requests()
|
274 |
-
time.sleep(60)
|
275 |
-
|
276 |
-
if res is False:
|
277 |
-
if random.randint(0, 1) == 0:
|
278 |
-
res = maybe_refresh_results(100)
|
279 |
-
else:
|
280 |
-
res = process_finished_requests(100)
|
281 |
-
|
282 |
-
time.sleep(60)
|
283 |
-
|
284 |
-
if res is False:
|
285 |
-
if random.randint(0, 1) == 0:
|
286 |
-
res = maybe_refresh_results(0)
|
287 |
-
else:
|
288 |
-
res = process_finished_requests(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|