counterfactual-world-models / cwm /model /modeling_pretrain_cleaned_soft.py
rahulvenkk
big hard cwm
8e8833a
raw
history blame
29.1 kB
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
from einops import rearrange
from cwm.model.model_utils import Block, _cfg, PatchEmbed, get_sinusoid_encoding_table
from torch import Tensor
import cwm.utils as utils
def trunc_normal_(tensor, mean=0., std=1.):
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
def interpolate_pos_encoding(pos_embed, n_frames, h, w):
N = pos_embed.shape[1]
if N == (h * w * n_frames):
return pos_embed
old_h = old_w = int((N / n_frames) ** 0.5)
patch_pos_embed = pos_embed.view(1, n_frames, old_h, old_w, -1).flatten(0, 1).permute(0, 3, 1, 2)
patch_pos_embed = F.interpolate(
patch_pos_embed,
size=(h, w),
mode='bicubic',
)
return patch_pos_embed.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(0)
PRINT_PADDING = False
class PretrainVisionTransformerEncoder(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=(16, 16), in_chans=3, num_classes=0, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, tubelet_size=2,
use_learnable_pos_emb=False, num_frames=16, embed_per_frame=False, clumping_factor=None, block_func=Block, k_bias=False, interp_noise=False, block_kwargs={}, legacy=False, xla_flash=False, learn_pos_embed=False):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_size = (tubelet_size,) + patch_size
self.pt, self.ph, self.pw = self.patch_size
self.h = int(img_size / self.ph)
self.w = int(img_size / self.pw)
self.hw = self.h * self.w
self.clumping_factor = clumping_factor
self.interp_noise = interp_noise
self.embed_dim = embed_dim
self.num_heads = num_heads
if self.clumping_factor is not None: # Clump the context frame for memory efficiency
self.clumping_embed = nn.Conv3d(in_channels=embed_dim, out_channels=embed_dim,
kernel_size=(tubelet_size, clumping_factor, clumping_factor),
stride=(tubelet_size, clumping_factor, clumping_factor))
self._embed_per_frame = embed_per_frame
if not self._embed_per_frame:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,tubelet_size=tubelet_size,num_frames=num_frames)
num_patches = self.patch_embed.num_patches
elif self._embed_per_frame:
assert (num_frames % tubelet_size) == 0
num_embeddings = (num_frames // tubelet_size)
self.patch_embed = nn.ModuleList([
PatchEmbed(
img_size=img_size, patch_size=patch_size,
in_chans=in_chans, embed_dim=embed_dim,
tubelet_size=tubelet_size, num_frames=tubelet_size)
for _ in range(num_embeddings)])
num_patches = self.patch_embed[0].num_patches * num_embeddings
self.num_patches = num_patches
self.num_frames = num_frames
print("NUM PATCHES IN ENCODER", self.num_patches)
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
if learn_pos_embed:
self.pos_embed = nn.Parameter(self.pos_embed)
self.learn_pos_embed = learn_pos_embed
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
block_func(
dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, **block_kwargs, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if use_learnable_pos_emb:
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _set_pos_embed(self, dim=None):
if dim is None:
dim = self.embed_dim
if self.pos_embed is None:
self.pos_embed = get_sinusoid_encoding_table(
self.num_patches, dim)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def _get_pos_embed(self):
return self.pos_embed
def forward_block(self, x, idx):
return self.blocks[idx](x)
def interpolate_tensor_with_mask_token(self,
x: Tensor, mask: Tensor, mask_token: Tensor, invert: bool = True
) -> Tensor:
"""
Where mask == (0 if invert else 1), return x
where mask == (1 if invert else 0), return mask_token
Linearly interpolate between these using value of mask.
"""
# mask_token = mask_token
# breakpoint()
B, N, C = x.shape
assert mask.shape[1] == N, (
f"Number of tokens in mask ({mask.shape[1]}) does not match "
f"number of tokens in input ({N})"
)
assert mask_token.shape[-1] == C, (
f"Dimensionality of mask token ({mask_token.shape[-1]}) does not match "
f"dimensionality of tokens in input ({C})"
)
# convert mask to interpolation weights in range [0., 1.]
mask = mask.to(x).clip(min=0.0, max=1.0)
mask = (1.0 - mask) if invert else mask
mask = mask.unsqueeze(-1) # [B, N, 1]
# expand mask token
mask_token = mask_token.view(1, 1, C).expand(B, N, -1)
# interpolate
start = mask_token
end = x
return start + mask * (end - start)
def interpolate_tensor_with_noise(self,
x: Tensor, mask: Tensor, invert: bool = True
) -> Tensor:
"""
Where mask == (0 if invert else 1), return x
where mask == (1 if invert else 0), return mask_token
Linearly interpolate between these using value of mask.
"""
# mask_token = mask_token
# breakpoint()
B, N, C = x.shape
assert mask.shape[1] == N, (
f"Number of tokens in mask ({mask.shape[1]}) does not match "
f"number of tokens in input ({N})"
)
# convert mask to interpolation weights in range [0., 1.]
mask = mask.to(x).clip(min=0.0, max=1.0)
mask = (1.0 - mask) if invert else mask
mask = mask.unsqueeze(-1) # [B, N, 1]
# ImageNet mean and std
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1)
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1)
# Generate a 3x8x8 patch of random numbers from a normal distribution
# with the same mean and std as ImageNet images
rand_vec = torch.randn(B, N, 3, self.patch_size[-2], self.patch_size[-1]) * std + mean
rand_vec = rand_vec.to(x.device).to(x.dtype).view(B, N, -1)
# interpolate
start = rand_vec
end = x
return start + mask * (end - start)
def tokenize(self, x, mask=None):
if not self._embed_per_frame:
x = self.patch_embed(x)
elif self._embed_per_frame:
x = torch.cat([
self.patch_embed[i](
x[:,:,(i*self.pt):((i+1)*self.pt)])
for i in range(len(self.patch_embed))], 1)
pos_embed = self._get_pos_embed().type_as(x).to(x.device).clone()
if not self._learnable_pos_embed:
pos_embed = pos_embed.detach()
x = x + pos_embed
return (x, mask)
def tokenize_and_mask(self, x, mask):
x, mask = self.tokenize(x, mask)
B, _, C = x.shape
# breakpoint()
x_vis = x[~mask].reshape(B, -1, C)
return x_vis
def tokenize_and_mask_variable_size(self, x, mask):
x, mask = self.tokenize(x, mask)
B, _, C = x.shape
all_batches = []
max_len = 0
all_len = []
for i in range(B):
x_vis = x[i, ~mask[i]]
if x_vis.shape[0] > max_len:
max_len = x_vis.shape[0]
all_batches.append(x_vis)
all_len.append(x_vis.shape[0])
#pad all batches to max_len in a single line
x_vis = torch.stack([F.pad(batch, (0,0,0,max_len-batch.shape[0]), mode='constant', value=0) for batch in all_batches])
return x_vis, all_len
def forward_features(self, x, mask, move_patches, static_patches, delta, mask_token, res=1, return_feat_layer=None):
_, _, T, H, W = x.shape
if self.interp_noise:
#patchify x with patch size[0], patch size[1]
p0 = self.patch_size[-2]
p1 = self.patch_size[-1]
x = rearrange(x, 'b c t (h p0) (w p1) -> b (t h w) (p0 p1 c)', p0=p0, p1=p1, h=H//p0, w=W//p1) # x: [B, N, C]
x = self.interpolate_tensor_with_noise(x, mask, invert=True)
x = rearrange(x, 'b n (p c) -> b n p c', c=3)
# Notice: To visualize the reconstruction video, we add the predict and the original mean and var of each patch.
x = rearrange(x,
'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)',
p0=1,
p1=self.patch_size[-2],
p2=self.patch_size[-1],
h=H//self.patch_size[-2],
w=W//self.patch_size[-1])
x = embed = self.patch_embed(x)
if res != 1:
p0 = self.patch_size[-2]
p1 = self.patch_size[-1]
pos_embed = interpolate_pos_encoding(self.pos_embed, T, int(256 // p0 * res), int(256 // p1 * res))
else:
pos_embed = self._get_pos_embed()
pos_embed = pos_embed.type_as(x) # .to(x.device).clone()
if not self.learn_pos_embed:
pos_embed = pos_embed.to(x.device).clone().detach()
x = x + pos_embed
B, _, C = x.shape
# x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible
if not self.interp_noise:
x_vis = self.interpolate_tensor_with_mask_token(x, mask, mask_token, invert=True)
else:
x_vis = x
if move_patches is not None:
assert B == 1, "Only support batch size 1 for now"
for (px, py) in move_patches:
idx = px * self.w + py
dx, dy = delta
nx, ny = px + dx, py + dy
new_idx = nx * self.w + ny + (self.patch_embed.num_frames - 1) * (self.h * self.w)
emb = embed[:, idx]
pos_emb = pos_embed[:, new_idx]
emb = emb + pos_emb
x_vis = torch.cat([x_vis, emb[None]], 1)
if static_patches is not None:
for (px, py) in static_patches:
idx = px * self.w + py
new_idx = px * self.w + py + (self.patch_embed.num_frames - 1) * (self.h * self.w)
emb = embed[:, idx]
pos_emb = pos_embed[:, new_idx]
emb = emb + pos_emb
x_vis = torch.cat([x_vis, emb[None]], 1)
for blk_idx, blk in enumerate(self.blocks):
x_vis = blk(x_vis)
if blk_idx == return_feat_layer:
return x_vis
x_vis = self.norm(x_vis)
return x_vis
def _set_inputs(self, *args, **kwargs):
pass
def forward(self, x, mask, mask_token, return_feat_layer=None, timestamps=None, move_patches=None, static_patches=None, delta=None, res=1):
self._set_inputs(x, mask)
# pass input through the encoder
x = self.forward_features(x, mask, move_patches, static_patches, delta, mask_token, return_feat_layer=return_feat_layer, res=res)
# if return_feat_layer is not None and is lesser than the number of blocks it means that we are returning the
# features of an intermediate block layer. in this case we do not want to apply the head layer
if return_feat_layer is not None and return_feat_layer < len(self.blocks):
return x
# if we are passing through the entire encoder transformer we apply the head layer
x = self.head(x)
return x
class PretrainVisionTransformerDecoder(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, patch_size=(16, 16), num_classes=768, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, block_func=Block, block_kwargs={}, k_bias=False, legacy=True, xla_flash=False
):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_size = patch_size
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
block_func(
dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, **block_kwargs, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_block(self, x, idx):
return self.blocks[idx](x)
def get_last_tokens(self, x, return_token_num):
if return_token_num > 0:
return self.head(self.norm(x[:,-return_token_num:]))
elif return_token_num == 0:
return self.head(self.norm(x))[:,x.size(1):]
else:
return self.head(self.norm(x))
def forward(self, x, return_token_num, return_feat_layer=None):
# pass input through the decoder
for blk_idx, blk in enumerate(self.blocks):
x = blk(x)
# if we are returning the features of an intermediate block
# do so and skip the remaining computation
if blk_idx == return_feat_layer:
return x
if return_token_num > 0:
x = self.head(self.norm(x[:, -return_token_num:])) # only return the mask tokens predict pixels
else:
x = self.head(self.norm(x))
return x
class PretrainVisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
default_input_kwargs = {'unnormalize': True}
def __init__(self,
img_size=224,
patch_size=(16, 16),
main_input=None,
main_input_kwargs=default_input_kwargs,
encoder_func=PretrainVisionTransformerEncoder,
encoder_in_chans=3,
encoder_num_classes=0,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_block_func=Block,
encoder_block_kwargs={},
decoder_num_classes=None, # For pretraining this parameter isn't relevant but must be set according to tube&patch size
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=8,
decoder_block_func=Block,
decoder_block_kwargs={},
mlp_ratio=4.,
qkv_bias=False,
k_bias=False,
qk_scale=None,
num_frames=16,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
init_values=0.,
spacetime_separable_pos_embed=False,
tubelet_size=2,
num_classes=0, # avoid the error from create_fn in timm
in_chans=0, # avoid the error from create_fn in timm
embed_per_frame=False,
flow_model_ckpt=None,
flow_frames=None,
random_input=False,
use_flash_attention=False,
additional_decoder_for_transition=False,
additional_decoder_for_x3_hat=False,
clumping_factor=None,
return_detectron_format=False,
out_feature='out_feature',
interp_noise=False,
legacy=True,
xla_flash=False,
learn_pos_embed=False,
**kwargs
):
super().__init__()
encoder_block_kwargs.update({'flash_attention': use_flash_attention})
decoder_block_kwargs.update({'flash_attention': use_flash_attention})
self.clumping_factor = clumping_factor
self.interp_noise = interp_noise
self.learn_pos_embed = learn_pos_embed
if self.clumping_factor is not None:
print('Clumping factor = %d' % self.clumping_factor)
self.clumping_embed = nn.Conv3d(in_channels=decoder_embed_dim, out_channels=decoder_embed_dim,
kernel_size=(1, clumping_factor, clumping_factor),
stride=(1, clumping_factor, clumping_factor))
self.clumping_embed.apply(self._init_weights)
self.up = nn.ConvTranspose2d(decoder_embed_dim, decoder_embed_dim, kernel_size=2, stride=2)
self.up.apply(self._init_weights)
self.encoder = encoder_func(
img_size=img_size,
patch_size=patch_size,
in_chans=encoder_in_chans,
num_classes=encoder_num_classes,
embed_dim=encoder_embed_dim,
depth=encoder_depth,
num_heads=encoder_num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
init_values=init_values,
tubelet_size=tubelet_size,
num_frames=num_frames,
embed_per_frame=embed_per_frame,
block_func=encoder_block_func,
block_kwargs=encoder_block_kwargs,
clumping_factor=clumping_factor,
k_bias=k_bias,
interp_noise = interp_noise,
legacy=legacy,
xla_flash=xla_flash,
learn_pos_embed=learn_pos_embed,
**kwargs)
if not return_detectron_format:
self.decoder = PretrainVisionTransformerDecoder(
patch_size=patch_size,
num_classes= 3*tubelet_size*(patch_size[0]*patch_size[1]) if decoder_num_classes is None else decoder_num_classes,
embed_dim=decoder_embed_dim,
depth=decoder_depth,
num_heads=decoder_num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
init_values=init_values,
block_func=decoder_block_func,
k_bias=k_bias, xla_flash=xla_flash,
block_kwargs=decoder_block_kwargs, legacy=legacy)
self.encoder_to_decoder = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=k_bias)
if not self.interp_noise:
self.mask_token = nn.Parameter(torch.zeros(1, 1, encoder_embed_dim))
trunc_normal_(self.mask_token, std=.02)
else:
self.mask_token = None
self.timestamps = None
self.encoder.timestamps = None
if self.learn_pos_embed:
self.pos_embed = nn.Parameter(get_sinusoid_encoding_table(self.encoder.num_patches, decoder_embed_dim))
else:
self.pos_embed = get_sinusoid_encoding_table(self.encoder.num_patches, decoder_embed_dim)
self.num_frames = num_frames
self.num_patches = self.encoder.num_patches
if self.num_frames is not None:
self.num_patches_per_frame = self.num_patches // self.num_frames
else:
self.num_patches_per_frame = self.num_patches
self.patch_size = self.encoder.patch_size
if isinstance(img_size, int):
self.image_size = (img_size, img_size)
else:
assert hasattr(img_size, '__len__'), img_size
self.image_size = img_size
self.return_detectron_format = return_detectron_format
@property
def mask_size(self):
return (self.num_frames // self.patch_size[0],
self.image_size[-2] // self.patch_size[-2],
self.image_size[-1] // self.patch_size[-1])
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'mask_token'}
def unpatchify(self, x, mask):
# Define the input tensor
B, N, C = x.shape # batch size
h, w = self.mask_size[-2:]
patch_size = self.patch_size[-2:]
recon = torch.zeros(B, h*w, C).to(x)
recon[mask[:, -h*w:]] = x.flatten(0, 1)
rec_imgs = rearrange(recon, 'b n (p c) -> b n p c', c=3)
# Notice: To visualize the reconstruction video, we add the predict and the original mean and var of each patch.
rec_imgs = rearrange(rec_imgs,
'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)',
p0=1,
p1=patch_size[0],
p2=patch_size[1],
h=h,
w=w)
# MEAN = torch.from_numpy(np.array((0.485, 0.456, 0.406))[None, :, None, None, None]).cuda().half()
# STD = torch.from_numpy(np.array((0.229, 0.224, 0.225))[None, :, None, None, None]).cuda().half()
#
# rec_imgs = (rec_imgs - MEAN) / STD
return rec_imgs
def forward(self, x, mask, timestamps=None, return_feat_layer=None, res=1, *args, get_encoder_out=False, **kwargs):
_, _, T, _, _ = x.shape
self.device = x.device
enc_out = self.encoder(x, mask, self.mask_token, timestamps=timestamps, return_feat_layer=return_feat_layer, res=res, *args, **kwargs) # [B, N_vis, C_e]
x_vis = self.encoder_to_decoder(enc_out)
# check if we are returning the features of an intermediate block layer
if return_feat_layer is not None:
# if the returned layer is one of the encoder layers (the first N_enc layers) we return the features
# if the return feat layer is exactly N_enc then we are returning the layer after the entire encoder block
# in both cases this manifests as returning x_vis, since self.encoder will return either the final block embedding
# or the final head embedding depending on the return_feat_layer
# in either case we subtract the number of encoder blocks + 1 (for the intermediate embedding layer)
# from the return_feat_layer to get the correct index for the decoder block
return_feat_layer = return_feat_layer - len(self.encoder.blocks) - 1
if return_feat_layer < 0:
return x_vis
# add pos embedding
if res != 1:
p0 = self.patch_size[-2]
p1 = self.patch_size[-1]
pos_embed = interpolate_pos_encoding(self.pos_embed, T, int(256 // p0 * res), int(256 // p1 * res))
else:
pos_embed = self.pos_embed
dec_pos_embed = pos_embed.expand(x_vis.size(0), -1, -1).type_as(x)
if not self.learn_pos_embed:
dec_pos_embed = dec_pos_embed.to(x.device).clone().detach()
x_vis = x_vis + dec_pos_embed
# pass input through the decoder, this will automatically return an intermediate layer if return_feat_layer is set
x_all = self.decoder(x_vis, 0, return_feat_layer=return_feat_layer)
if get_encoder_out:
return x_all, enc_out
return x_all
def get_counterfactual(self, x, move_patches):
'''
:param x: input tensor [1, C, T, H, W]: support only batch size 1 for now
:param move_patches: torch tensor [N, 4] sized array where each row contains patch motion [x1, y1, x2, y2] in pixel coordinates
:return:
'''
B, _, T, H, H = x.shape
mask = torch.ones(B, self.encoder.hw * self.encoder.num_frames).to(x.device).bool()
mask[:, :self.encoder.hw * (self.encoder.num_frames - 1)] = False
move_patches = (move_patches / H) * self.encoder.h
move_patches = move_patches.to(torch.int64)
for x1, y1, x2, y2 in move_patches:
idx2 = x2 * self.encoder.w + y2 + (self.encoder.num_frames - 1) * (self.encoder.h * self.encoder.w)
mask[:, idx2] = False
im_x1 = x1 * self.encoder.ph
im_y1 = y1 * self.encoder.pw
im_x2 = x2 * self.encoder.ph
im_y2 = y2 * self.encoder.pw
x[:, :, -1, im_x2:im_x2 + self.encoder.ph, im_y2:im_y2 + self.encoder.pw] = x[:, :, -2,
im_x1:im_x1 + self.encoder.ph,
im_y1:im_y1 + self.encoder.pw]
prediction = self.forward(x, mask)[:, -self.encoder.hw:]
prediction = utils.unpatchify_cwm(
prediction,
patch_size=self.encoder.patch_size[-1],
) # reshape the output to an image
return prediction
def pretrain_vit_base_256_scaffold(**kwargs):
model = PretrainVisionTransformer(
img_size=256,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_num_classes=0,
decoder_embed_dim=768,
decoder_num_heads=12,
decoder_depth=12,
mlp_ratio=4,
qkv_bias=True,
k_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
model.default_cfg = _cfg()
return model